
If the vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are three mutually perpendicular vectors of equal magnitude, prove that $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$ is equally inclined with vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$.
Answer
543.3k+ views
Hint: We first assume the magnitude of the three vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$. They are three mutually perpendicular vectors of equal magnitude. We, based on the given condition find the mathematical form of $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0$. Then we find the magnitude of the vector form $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$. We also assume the angle between them. We find the angles and prove the requirement.
Complete step by step solution:
It’s given that $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are three mutually perpendicular vectors of equal magnitude.
We assume that $\left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=\left| \overrightarrow{c} \right|=\lambda $.
Since the vectors are mutually perpendicular, we can say $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0$.
We have to show that $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$ is equally inclined with vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$.
We take the magnitude of $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$.
So, ${{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}^{2}}=\overrightarrow{a}.\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{c}.\overrightarrow{c}+2\overrightarrow{a}.\overrightarrow{b}+2\overrightarrow{b}.\overrightarrow{c}+2\overrightarrow{c}.\overrightarrow{a}$.
We put the values to get
$\begin{align}
& {{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}^{2}} \\
& =\overrightarrow{a}.\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{c}.\overrightarrow{c}+2\overrightarrow{a}.\overrightarrow{b}+2\overrightarrow{b}.\overrightarrow{c}+2\overrightarrow{c}.\overrightarrow{a} \\
& ={{\lambda }^{2}}+{{\lambda }^{2}}+{{\lambda }^{2}}+0 \\
& =3{{\lambda }^{2}} \\
\end{align}$
Taking square root, we get $\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|=\sqrt{3}\lambda $.
Now we assume the angle these vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ make with $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$ are ${{\theta }_{1}},{{\theta }_{2}},{{\theta }_{3}}$ respectively.
Therefore, $\cos {{\theta }_{1}}=\dfrac{\overrightarrow{a}\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)}{\left| \overrightarrow{a} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\overrightarrow{a}.\overrightarrow{a}+\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{a}\overrightarrow{c}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{{{\left| \overrightarrow{a} \right|}^{2}}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}$.
Putting the values, we get \[\cos {{\theta }_{1}}=\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\lambda }{\sqrt{3}\lambda }=\dfrac{1}{\sqrt{3}}\].
This gives \[{{\theta }_{1}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
similarly, $\cos {{\theta }_{2}}=\dfrac{\overrightarrow{b}\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)}{\left| \overrightarrow{b} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\overrightarrow{b}.\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{b}\overrightarrow{c}}{\left| \overrightarrow{b} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{{{\left| \overrightarrow{b} \right|}^{2}}}{\left| \overrightarrow{b} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}$.
Putting the values, we get \[\cos {{\theta }_{2}}=\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\lambda }{\sqrt{3}\lambda }=\dfrac{1}{\sqrt{3}}\].
This gives \[{{\theta }_{2}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
Therefore, $\cos {{\theta }_{3}}=\dfrac{\overrightarrow{c}\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)}{\left| \overrightarrow{c} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\overrightarrow{c}.\overrightarrow{a}+\overrightarrow{c}.\overrightarrow{b}+\overrightarrow{c}\overrightarrow{c}}{\left| \overrightarrow{c} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{{{\left| \overrightarrow{c} \right|}^{2}}}{\left| \overrightarrow{c} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}$.
Putting the values, we get \[\cos {{\theta }_{3}}=\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\lambda }{\sqrt{3}\lambda }=\dfrac{1}{\sqrt{3}}\].
This gives \[{{\theta }_{3}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
Therefore, ${{\theta }_{1}}={{\theta }_{2}}={{\theta }_{3}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)$. Hence, $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$ is equally inclined with vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$.
Note: We need not to find the exact angle for the vector $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$. The equality of the angles is enough to find the proof. As the three vectors are perpendicular, we can say $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0=\overrightarrow{b}.\overrightarrow{a}=\overrightarrow{c}.\overrightarrow{b}=\overrightarrow{a}.\overrightarrow{c}$.
Complete step by step solution:
It’s given that $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ are three mutually perpendicular vectors of equal magnitude.
We assume that $\left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=\left| \overrightarrow{c} \right|=\lambda $.
Since the vectors are mutually perpendicular, we can say $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0$.
We have to show that $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$ is equally inclined with vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$.
We take the magnitude of $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$.
So, ${{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}^{2}}=\overrightarrow{a}.\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{c}.\overrightarrow{c}+2\overrightarrow{a}.\overrightarrow{b}+2\overrightarrow{b}.\overrightarrow{c}+2\overrightarrow{c}.\overrightarrow{a}$.
We put the values to get
$\begin{align}
& {{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}^{2}} \\
& =\overrightarrow{a}.\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{c}.\overrightarrow{c}+2\overrightarrow{a}.\overrightarrow{b}+2\overrightarrow{b}.\overrightarrow{c}+2\overrightarrow{c}.\overrightarrow{a} \\
& ={{\lambda }^{2}}+{{\lambda }^{2}}+{{\lambda }^{2}}+0 \\
& =3{{\lambda }^{2}} \\
\end{align}$
Taking square root, we get $\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|=\sqrt{3}\lambda $.
Now we assume the angle these vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ make with $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$ are ${{\theta }_{1}},{{\theta }_{2}},{{\theta }_{3}}$ respectively.
Therefore, $\cos {{\theta }_{1}}=\dfrac{\overrightarrow{a}\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)}{\left| \overrightarrow{a} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\overrightarrow{a}.\overrightarrow{a}+\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{a}\overrightarrow{c}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{{{\left| \overrightarrow{a} \right|}^{2}}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}$.
Putting the values, we get \[\cos {{\theta }_{1}}=\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\lambda }{\sqrt{3}\lambda }=\dfrac{1}{\sqrt{3}}\].
This gives \[{{\theta }_{1}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
similarly, $\cos {{\theta }_{2}}=\dfrac{\overrightarrow{b}\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)}{\left| \overrightarrow{b} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\overrightarrow{b}.\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{b}\overrightarrow{c}}{\left| \overrightarrow{b} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{{{\left| \overrightarrow{b} \right|}^{2}}}{\left| \overrightarrow{b} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}$.
Putting the values, we get \[\cos {{\theta }_{2}}=\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\lambda }{\sqrt{3}\lambda }=\dfrac{1}{\sqrt{3}}\].
This gives \[{{\theta }_{2}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
Therefore, $\cos {{\theta }_{3}}=\dfrac{\overrightarrow{c}\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)}{\left| \overrightarrow{c} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\overrightarrow{c}.\overrightarrow{a}+\overrightarrow{c}.\overrightarrow{b}+\overrightarrow{c}\overrightarrow{c}}{\left| \overrightarrow{c} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{{{\left| \overrightarrow{c} \right|}^{2}}}{\left| \overrightarrow{c} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}$.
Putting the values, we get \[\cos {{\theta }_{3}}=\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\lambda }{\sqrt{3}\lambda }=\dfrac{1}{\sqrt{3}}\].
This gives \[{{\theta }_{3}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
Therefore, ${{\theta }_{1}}={{\theta }_{2}}={{\theta }_{3}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)$. Hence, $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$ is equally inclined with vectors $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$.
Note: We need not to find the exact angle for the vector $\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)$. The equality of the angles is enough to find the proof. As the three vectors are perpendicular, we can say $\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0=\overrightarrow{b}.\overrightarrow{a}=\overrightarrow{c}.\overrightarrow{b}=\overrightarrow{a}.\overrightarrow{c}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

