
If the value of \[\text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)+\text{co}{{\text{s}}^{-1}}\left( \dfrac{3}{4x} \right)=\dfrac{\pi }{2}\] where $\left( x>\dfrac{3}{4} \right)$ then x equal to:
\[\begin{align}
& A.\dfrac{\sqrt{145}}{12} \\
& B.\dfrac{\sqrt{145}}{10} \\
& C.\dfrac{\sqrt{146}}{12} \\
& D.\dfrac{\sqrt{145}}{11} \\
\end{align}\]
Answer
591.3k+ views
Hint: To solve this question, we will first try to simplify ${{\cos }^{-1}}$ on the LHS of equation by using formula:
\[\text{co}{{\text{s}}^{-1}}A+\text{co}{{\text{s}}^{-1}}B=\text{co}{{\text{s}}^{-1}}\left( AB-\sqrt{1-{{A}^{2}}}\sqrt{1-{{B}^{2}}} \right)\]
Where A and B are angles. Then we will take cos on both sides, use the identity $\text{cos}\left( \text{co}{{\text{s}}^{-1}}x \right)=x$ and result $\text{cos}\dfrac{\pi }{2}=0$ to simplify further. We will obtain an equation of degree 4 and get values of x. Check which values fall in the range of $\left( x>\dfrac{3}{4} \right)$ and report the answer.
Complete step-by-step solution:
We have a trigonometric identity stating relation between \[\text{co}{{\text{s}}^{-1}}A+\text{co}{{\text{s}}^{-1}}B\] which is given as below:
\[\text{co}{{\text{s}}^{-1}}A+\text{co}{{\text{s}}^{-1}}B=\text{co}{{\text{s}}^{-1}}\left( AB-\sqrt{1-{{A}^{2}}}\sqrt{1-{{B}^{2}}} \right)\]
Where A and B are angles.
We are given that, \[\text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)+\text{co}{{\text{s}}^{-1}}\left( \dfrac{3}{4x} \right)=\dfrac{\pi }{2}\] where $\left( x>\dfrac{3}{4} \right)$
Using the above stated formula by substituting $A=\dfrac{2}{3x}\text{ and }B=\dfrac{3}{4x}$ in above we get:
\[\begin{align}
& \Rightarrow \text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)+\text{co}{{\text{s}}^{-1}}\left( \dfrac{3}{4x} \right)=\dfrac{\pi }{2} \\
& \Rightarrow \text{co}{{\text{s}}^{-1}}\left( \left( \dfrac{2}{3x} \right)\left( \dfrac{3}{4x} \right)-\sqrt{1-{{\left( \dfrac{2}{3x} \right)}^{2}}}\sqrt{1-{{\left( \dfrac{3}{4x} \right)}^{2}}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Solving further gives:
\[\begin{align}
& \Rightarrow \text{co}{{\text{s}}^{-1}}\left( \dfrac{1}{2{{x}^{2}}}-\sqrt{1-\dfrac{4}{9{{x}^{2}}}}\sqrt{1-\dfrac{9}{16{{x}^{2}}}} \right)=\dfrac{\pi }{2} \\
& \Rightarrow \text{co}{{\text{s}}^{-1}}\left( \dfrac{1}{2{{x}^{2}}}-\sqrt{\dfrac{9{{x}^{2}}-4}{9{{x}^{2}}}}\sqrt{\dfrac{16{{x}^{2}}-9}{16{{x}^{2}}}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Taking cos on both sides, we get:
\[\Rightarrow \cos \left[ \text{co}{{\text{s}}^{-1}} \left( \dfrac{1}{2{{x}^{2}}}-\sqrt{\dfrac{9{{x}^{2}}-4}{9{{x}^{2}}}}\sqrt{\dfrac{16{{x}^{2}}-9}{16{{x}^{2}}}} \right)\right]=\cos \dfrac{\pi }{2}\]
Now, we know that $\cos \dfrac{\pi }{2}=0$ and also the identity $\text{cos}\left( \text{co}{{\text{s}}^{-1}}x \right)=x$ so, applying this we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{2{{x}^{2}}}-\sqrt{\dfrac{9{{x}^{2}}-4}{9{{x}^{2}}}}\sqrt{\dfrac{16{{x}^{2}}-9}{16{{x}^{2}}}}=0 \\
& \Rightarrow \dfrac{1}{2{{x}^{2}}}=\sqrt{\dfrac{9{{x}^{2}}-4}{9{{x}^{2}}}}\sqrt{\dfrac{16{{x}^{2}}-9}{16{{x}^{2}}}} \\
\end{align}\]
Now, we know that \[\sqrt{9{{x}^{2}}}=3x\text{ and }\sqrt{16{{x}^{2}}}=4x\]
Substituting this in above equation we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{2{{x}^{2}}}=\dfrac{\sqrt{9{{x}^{2}}-4}\sqrt{16{{x}^{2}}-9}}{3x\times 4x} \\
& \Rightarrow \dfrac{1}{2{{x}^{2}}}=\dfrac{\sqrt{9{{x}^{2}}-4}\sqrt{16{{x}^{2}}-9}}{12{{x}^{2}}} \\
\end{align}\]
Cancelling $\dfrac{1}{2{{x}^{2}}}$ from both sides we get:
\[\Rightarrow 1=\dfrac{\sqrt{9{{x}^{2}}-4}\sqrt{16{{x}^{2}}-9}}{6}\]
Cross multiplying we get:
\[\Rightarrow 6=\sqrt{9{{x}^{2}}-4}\sqrt{16{{x}^{2}}-9}\]
Squaring both sides, we get:
\[36=\left( 9{{x}^{2}}-4 \right)\left( 16{{x}^{2}}-9 \right)\]
Solving the expression by opening bracket of RHS we get:
\[\begin{align}
& 36=144{{x}^{4}}-81{{x}^{2}}-64{{x}^{2}}+36 \\
& \Rightarrow 36=144{{x}^{4}}-145{{x}^{2}}+36 \\
\end{align}\]
Cancelling 36 by subtracting 36 on both sides we get:
\[\begin{align}
& 0=144{{x}^{4}}-145{{x}^{2}} \\
& \Rightarrow 144{{x}^{4}}=145{{x}^{2}} \\
& \Rightarrow 144{{x}^{4}}-145{{x}^{2}}=0 \\
& \Rightarrow {{x}^{2}}\left( 144{{x}^{2}}-145 \right)=0 \\
\end{align}\]
So, we can equate the terms to 0 as
\[\begin{align}
& {{x}^{2}}=0\Rightarrow x=0\Rightarrow 144{{x}^{2}}-145=0 \\
& \Rightarrow {{x}^{2}}=\dfrac{145}{144}\Rightarrow x=\pm \sqrt{\dfrac{145}{144}}=\pm \dfrac{\sqrt{145}}{12} \\
\end{align}\]
So the possible value of x are \[x=0,+\dfrac{\sqrt{145}}{12},-\dfrac{\sqrt{145}}{12}\]
Now, given that $\left( x>\dfrac{3}{4} \right)\Rightarrow x=0$ is not possible as \[\left( x>\dfrac{3}{4} \right)\Rightarrow x\text{ is positive }\Rightarrow \text{ x }=\text{ }-\dfrac{\sqrt{145}}{12}\text{ not possible}\text{.}\]
\[\Rightarrow \text{x}=\dfrac{\sqrt{145}}{12}\] is the only possible value of x.
Therefore, we have value of \[\text{x}=\dfrac{\sqrt{145}}{12}\] so option A is correct.
Note: Another way to solve this question is by using the trigonometric identity given as:
\[\dfrac{\pi }{2}-{{\cos }^{-1}}\theta ={{\sin }^{-1}}\theta \text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
We have \[\text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)+\text{co}{{\text{s}}^{-1}}\left( \dfrac{3}{4x} \right)=\dfrac{\pi }{2}\] where $\left( x>\dfrac{3}{4} \right)$
Taking \[\text{co}{{\text{s}}^{-1}}\left( \dfrac{3}{4x} \right)\] to other side we have
\[\text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)=\dfrac{\pi }{2}-\text{co}{{\text{s}}^{-1}}\left( \dfrac{3}{4x} \right)\]
Using the identity stated above in equation (i) by substituting $\theta =\dfrac{3}{4x}$ we get:
\[\text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)={{\sin }^{-1}}\left( \dfrac{3}{4x} \right)\]
Again we will use a trigonometric identity given as:
\[{{\sin }^{-1}}\theta ={{\cos }^{-1}}\sqrt{1-{{\theta }^{2}}}\]
Using this identity above by putting $\theta =\dfrac{3}{4x}$ we get:
\[\text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)=\text{co}{{\text{s}}^{-1}}\sqrt{1-{{\left( \dfrac{3}{4x} \right)}^{2}}}\]
Now, applying cos both sides and using \[{{\cos }^{-1}}\cos \theta =\theta \] we get:
\[\Rightarrow \left( \dfrac{2}{3x} \right)=\sqrt{1-{{\left( \dfrac{3}{4x} \right)}^{2}}}\]
Squaring both sides, we get:
\[\begin{align}
& \Rightarrow {{\left( \dfrac{2}{3x} \right)}^{2}}={{\left( \sqrt{1-{{\left( \dfrac{3}{4x} \right)}^{2}}} \right)}^{2}} \\
& \Rightarrow \dfrac{4}{9{{x}^{2}}}=1-{{\left( \dfrac{3}{4x} \right)}^{2}} \\
& \Rightarrow \dfrac{4}{9{{x}^{2}}}+\dfrac{9}{16{{x}^{2}}}=1 \\
& \Rightarrow \dfrac{4}{9{{x}^{2}}}=1-\dfrac{9}{16{{x}^{2}}} \\
\end{align}\]
Taking LCM in RHS, we get:
\[\Rightarrow \dfrac{4}{9{{x}^{2}}}=\dfrac{16{{x}^{2}}-9}{16{{x}^{2}}}\]
Cross multiplying we get:
\[\begin{align}
& \Rightarrow 4\left( 16{{x}^{2}} \right)=\left( 9{{x}^{2}} \right)\left( 16{{x}^{2}}-9 \right) \\
& \Rightarrow 64{{x}^{2}}=144{{x}^{4}}-81{{x}^{2}} \\
& \Rightarrow 144{{x}^{4}}-145{{x}^{2}}=0 \\
& \Rightarrow {{x}^{2}}\left( 144{{x}^{2}}-145 \right)=0 \\
\end{align}\]
So, we again have obtained $x=0,\pm \dfrac{\sqrt{145}}{12}$ as we have obtained above.
Here, \[x>\dfrac{3}{4}\Rightarrow x=+\dfrac{\sqrt{145}}{12}\] is only possible answer.
\[\text{co}{{\text{s}}^{-1}}A+\text{co}{{\text{s}}^{-1}}B=\text{co}{{\text{s}}^{-1}}\left( AB-\sqrt{1-{{A}^{2}}}\sqrt{1-{{B}^{2}}} \right)\]
Where A and B are angles. Then we will take cos on both sides, use the identity $\text{cos}\left( \text{co}{{\text{s}}^{-1}}x \right)=x$ and result $\text{cos}\dfrac{\pi }{2}=0$ to simplify further. We will obtain an equation of degree 4 and get values of x. Check which values fall in the range of $\left( x>\dfrac{3}{4} \right)$ and report the answer.
Complete step-by-step solution:
We have a trigonometric identity stating relation between \[\text{co}{{\text{s}}^{-1}}A+\text{co}{{\text{s}}^{-1}}B\] which is given as below:
\[\text{co}{{\text{s}}^{-1}}A+\text{co}{{\text{s}}^{-1}}B=\text{co}{{\text{s}}^{-1}}\left( AB-\sqrt{1-{{A}^{2}}}\sqrt{1-{{B}^{2}}} \right)\]
Where A and B are angles.
We are given that, \[\text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)+\text{co}{{\text{s}}^{-1}}\left( \dfrac{3}{4x} \right)=\dfrac{\pi }{2}\] where $\left( x>\dfrac{3}{4} \right)$
Using the above stated formula by substituting $A=\dfrac{2}{3x}\text{ and }B=\dfrac{3}{4x}$ in above we get:
\[\begin{align}
& \Rightarrow \text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)+\text{co}{{\text{s}}^{-1}}\left( \dfrac{3}{4x} \right)=\dfrac{\pi }{2} \\
& \Rightarrow \text{co}{{\text{s}}^{-1}}\left( \left( \dfrac{2}{3x} \right)\left( \dfrac{3}{4x} \right)-\sqrt{1-{{\left( \dfrac{2}{3x} \right)}^{2}}}\sqrt{1-{{\left( \dfrac{3}{4x} \right)}^{2}}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Solving further gives:
\[\begin{align}
& \Rightarrow \text{co}{{\text{s}}^{-1}}\left( \dfrac{1}{2{{x}^{2}}}-\sqrt{1-\dfrac{4}{9{{x}^{2}}}}\sqrt{1-\dfrac{9}{16{{x}^{2}}}} \right)=\dfrac{\pi }{2} \\
& \Rightarrow \text{co}{{\text{s}}^{-1}}\left( \dfrac{1}{2{{x}^{2}}}-\sqrt{\dfrac{9{{x}^{2}}-4}{9{{x}^{2}}}}\sqrt{\dfrac{16{{x}^{2}}-9}{16{{x}^{2}}}} \right)=\dfrac{\pi }{2} \\
\end{align}\]
Taking cos on both sides, we get:
\[\Rightarrow \cos \left[ \text{co}{{\text{s}}^{-1}} \left( \dfrac{1}{2{{x}^{2}}}-\sqrt{\dfrac{9{{x}^{2}}-4}{9{{x}^{2}}}}\sqrt{\dfrac{16{{x}^{2}}-9}{16{{x}^{2}}}} \right)\right]=\cos \dfrac{\pi }{2}\]
Now, we know that $\cos \dfrac{\pi }{2}=0$ and also the identity $\text{cos}\left( \text{co}{{\text{s}}^{-1}}x \right)=x$ so, applying this we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{2{{x}^{2}}}-\sqrt{\dfrac{9{{x}^{2}}-4}{9{{x}^{2}}}}\sqrt{\dfrac{16{{x}^{2}}-9}{16{{x}^{2}}}}=0 \\
& \Rightarrow \dfrac{1}{2{{x}^{2}}}=\sqrt{\dfrac{9{{x}^{2}}-4}{9{{x}^{2}}}}\sqrt{\dfrac{16{{x}^{2}}-9}{16{{x}^{2}}}} \\
\end{align}\]
Now, we know that \[\sqrt{9{{x}^{2}}}=3x\text{ and }\sqrt{16{{x}^{2}}}=4x\]
Substituting this in above equation we get:
\[\begin{align}
& \Rightarrow \dfrac{1}{2{{x}^{2}}}=\dfrac{\sqrt{9{{x}^{2}}-4}\sqrt{16{{x}^{2}}-9}}{3x\times 4x} \\
& \Rightarrow \dfrac{1}{2{{x}^{2}}}=\dfrac{\sqrt{9{{x}^{2}}-4}\sqrt{16{{x}^{2}}-9}}{12{{x}^{2}}} \\
\end{align}\]
Cancelling $\dfrac{1}{2{{x}^{2}}}$ from both sides we get:
\[\Rightarrow 1=\dfrac{\sqrt{9{{x}^{2}}-4}\sqrt{16{{x}^{2}}-9}}{6}\]
Cross multiplying we get:
\[\Rightarrow 6=\sqrt{9{{x}^{2}}-4}\sqrt{16{{x}^{2}}-9}\]
Squaring both sides, we get:
\[36=\left( 9{{x}^{2}}-4 \right)\left( 16{{x}^{2}}-9 \right)\]
Solving the expression by opening bracket of RHS we get:
\[\begin{align}
& 36=144{{x}^{4}}-81{{x}^{2}}-64{{x}^{2}}+36 \\
& \Rightarrow 36=144{{x}^{4}}-145{{x}^{2}}+36 \\
\end{align}\]
Cancelling 36 by subtracting 36 on both sides we get:
\[\begin{align}
& 0=144{{x}^{4}}-145{{x}^{2}} \\
& \Rightarrow 144{{x}^{4}}=145{{x}^{2}} \\
& \Rightarrow 144{{x}^{4}}-145{{x}^{2}}=0 \\
& \Rightarrow {{x}^{2}}\left( 144{{x}^{2}}-145 \right)=0 \\
\end{align}\]
So, we can equate the terms to 0 as
\[\begin{align}
& {{x}^{2}}=0\Rightarrow x=0\Rightarrow 144{{x}^{2}}-145=0 \\
& \Rightarrow {{x}^{2}}=\dfrac{145}{144}\Rightarrow x=\pm \sqrt{\dfrac{145}{144}}=\pm \dfrac{\sqrt{145}}{12} \\
\end{align}\]
So the possible value of x are \[x=0,+\dfrac{\sqrt{145}}{12},-\dfrac{\sqrt{145}}{12}\]
Now, given that $\left( x>\dfrac{3}{4} \right)\Rightarrow x=0$ is not possible as \[\left( x>\dfrac{3}{4} \right)\Rightarrow x\text{ is positive }\Rightarrow \text{ x }=\text{ }-\dfrac{\sqrt{145}}{12}\text{ not possible}\text{.}\]
\[\Rightarrow \text{x}=\dfrac{\sqrt{145}}{12}\] is the only possible value of x.
Therefore, we have value of \[\text{x}=\dfrac{\sqrt{145}}{12}\] so option A is correct.
Note: Another way to solve this question is by using the trigonometric identity given as:
\[\dfrac{\pi }{2}-{{\cos }^{-1}}\theta ={{\sin }^{-1}}\theta \text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
We have \[\text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)+\text{co}{{\text{s}}^{-1}}\left( \dfrac{3}{4x} \right)=\dfrac{\pi }{2}\] where $\left( x>\dfrac{3}{4} \right)$
Taking \[\text{co}{{\text{s}}^{-1}}\left( \dfrac{3}{4x} \right)\] to other side we have
\[\text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)=\dfrac{\pi }{2}-\text{co}{{\text{s}}^{-1}}\left( \dfrac{3}{4x} \right)\]
Using the identity stated above in equation (i) by substituting $\theta =\dfrac{3}{4x}$ we get:
\[\text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)={{\sin }^{-1}}\left( \dfrac{3}{4x} \right)\]
Again we will use a trigonometric identity given as:
\[{{\sin }^{-1}}\theta ={{\cos }^{-1}}\sqrt{1-{{\theta }^{2}}}\]
Using this identity above by putting $\theta =\dfrac{3}{4x}$ we get:
\[\text{co}{{\text{s}}^{-1}}\left( \dfrac{2}{3x} \right)=\text{co}{{\text{s}}^{-1}}\sqrt{1-{{\left( \dfrac{3}{4x} \right)}^{2}}}\]
Now, applying cos both sides and using \[{{\cos }^{-1}}\cos \theta =\theta \] we get:
\[\Rightarrow \left( \dfrac{2}{3x} \right)=\sqrt{1-{{\left( \dfrac{3}{4x} \right)}^{2}}}\]
Squaring both sides, we get:
\[\begin{align}
& \Rightarrow {{\left( \dfrac{2}{3x} \right)}^{2}}={{\left( \sqrt{1-{{\left( \dfrac{3}{4x} \right)}^{2}}} \right)}^{2}} \\
& \Rightarrow \dfrac{4}{9{{x}^{2}}}=1-{{\left( \dfrac{3}{4x} \right)}^{2}} \\
& \Rightarrow \dfrac{4}{9{{x}^{2}}}+\dfrac{9}{16{{x}^{2}}}=1 \\
& \Rightarrow \dfrac{4}{9{{x}^{2}}}=1-\dfrac{9}{16{{x}^{2}}} \\
\end{align}\]
Taking LCM in RHS, we get:
\[\Rightarrow \dfrac{4}{9{{x}^{2}}}=\dfrac{16{{x}^{2}}-9}{16{{x}^{2}}}\]
Cross multiplying we get:
\[\begin{align}
& \Rightarrow 4\left( 16{{x}^{2}} \right)=\left( 9{{x}^{2}} \right)\left( 16{{x}^{2}}-9 \right) \\
& \Rightarrow 64{{x}^{2}}=144{{x}^{4}}-81{{x}^{2}} \\
& \Rightarrow 144{{x}^{4}}-145{{x}^{2}}=0 \\
& \Rightarrow {{x}^{2}}\left( 144{{x}^{2}}-145 \right)=0 \\
\end{align}\]
So, we again have obtained $x=0,\pm \dfrac{\sqrt{145}}{12}$ as we have obtained above.
Here, \[x>\dfrac{3}{4}\Rightarrow x=+\dfrac{\sqrt{145}}{12}\] is only possible answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

