Answer
Verified
448.2k+ views
Hint: We will use the fact that dot product of two vectors p and q where \[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\] is given by \[p.q=x{{x}^{'}}+y{{y}^{'}}+z{{z}^{'}}\]; and the cross product is given by, \[p\times q=\left| \begin{matrix}
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\].
Complete step-by-step answer:
To compute the cross product of two vectors we have,
Let \[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\]
Then cross – product \[p\times q\] is given as,
\[p\times q=\left| \begin{matrix}
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\]
We have, \[a=2i+3j+4k\], \[b=i+j-k\] and \[c=i-j+k\].
First we will compute \[b\times c\] using formula stated above,
We have,
\[b\times c=\left| \begin{matrix}
i & j & k \\
1 & 1 & -1 \\
1 & -1 & 1 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& b\times c=i\left( 1-1 \right)+\left( -j \right)\left( +1+1 \right)+k\left( -1-1 \right) \\
& \Rightarrow b\times c=-2j-2k \\
\end{align}\]
Let, \[b\times c=d=-2j-2k\].
Then we want to compute \[a\times d\] now.
Using formula stated above we have,
\[a\times d=\left| \begin{matrix}
i & j & k \\
2 & 3 & 4 \\
0 & -2 & -2 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& a\times d=i\left( -6+8 \right)-j\left( -4 \right)+k\left( -4 \right) \\
& \Rightarrow a\times d=2i+4j-4k \\
\end{align}\]
So, the value of \[a\times \left( b\times c \right)=2i+4j-4k\], which is the required solution.
Finally we have to verify that obtained value of \[a\times \left( b\times c \right)\] is perpendicular to a.
Two vectors are said to be perpendicular if there dot product is zero.
Let \[a\times \left( b\times c \right)=e\]
Then, \[e=2i+4j-4k\]
And \[a=2i+3j+4k\]
Now dot product of two vectors when,
\[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\] is given by,
\[p.q=x{{x}^{'}}+y{{y}^{'}}+z{{z}^{'}}\]
Then using this we have,
\[\begin{align}
& a.e=2\left( 2 \right)+\left( 3 \right)\left( 4 \right)+\left( 4 \right)\left( -4 \right) \\
& a.e=4+12-16 \\
& a.e=16-16 \\
& a.e=0 \\
\end{align}\]
So, the dot product of \[a\times \left( b\times c \right)\] and a is zero. Hence they both are perpendicular. Hence verified.
Note: Another way to solve this question can be using the formula to vector triple product of cross product of three vectors which is given as, \[\overset{\to }{\mathop{a}}\,\times \left( \overset{\to }{\mathop{b}}\,\times \overset{\to }{\mathop{c}}\, \right)=\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{c}}\, \right)\overset{\to }{\mathop{b}}\,-\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\, \right)\overset{\to }{\mathop{c}}\,\], where a, b, c are three vectors. The answer anyway would be the same.
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\].
Complete step-by-step answer:
To compute the cross product of two vectors we have,
Let \[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\]
Then cross – product \[p\times q\] is given as,
\[p\times q=\left| \begin{matrix}
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\]
We have, \[a=2i+3j+4k\], \[b=i+j-k\] and \[c=i-j+k\].
First we will compute \[b\times c\] using formula stated above,
We have,
\[b\times c=\left| \begin{matrix}
i & j & k \\
1 & 1 & -1 \\
1 & -1 & 1 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& b\times c=i\left( 1-1 \right)+\left( -j \right)\left( +1+1 \right)+k\left( -1-1 \right) \\
& \Rightarrow b\times c=-2j-2k \\
\end{align}\]
Let, \[b\times c=d=-2j-2k\].
Then we want to compute \[a\times d\] now.
Using formula stated above we have,
\[a\times d=\left| \begin{matrix}
i & j & k \\
2 & 3 & 4 \\
0 & -2 & -2 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& a\times d=i\left( -6+8 \right)-j\left( -4 \right)+k\left( -4 \right) \\
& \Rightarrow a\times d=2i+4j-4k \\
\end{align}\]
So, the value of \[a\times \left( b\times c \right)=2i+4j-4k\], which is the required solution.
Finally we have to verify that obtained value of \[a\times \left( b\times c \right)\] is perpendicular to a.
Two vectors are said to be perpendicular if there dot product is zero.
Let \[a\times \left( b\times c \right)=e\]
Then, \[e=2i+4j-4k\]
And \[a=2i+3j+4k\]
Now dot product of two vectors when,
\[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\] is given by,
\[p.q=x{{x}^{'}}+y{{y}^{'}}+z{{z}^{'}}\]
Then using this we have,
\[\begin{align}
& a.e=2\left( 2 \right)+\left( 3 \right)\left( 4 \right)+\left( 4 \right)\left( -4 \right) \\
& a.e=4+12-16 \\
& a.e=16-16 \\
& a.e=0 \\
\end{align}\]
So, the dot product of \[a\times \left( b\times c \right)\] and a is zero. Hence they both are perpendicular. Hence verified.
Note: Another way to solve this question can be using the formula to vector triple product of cross product of three vectors which is given as, \[\overset{\to }{\mathop{a}}\,\times \left( \overset{\to }{\mathop{b}}\,\times \overset{\to }{\mathop{c}}\, \right)=\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{c}}\, \right)\overset{\to }{\mathop{b}}\,-\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\, \right)\overset{\to }{\mathop{c}}\,\], where a, b, c are three vectors. The answer anyway would be the same.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths