
If the value of \[a=2i+3j+4k\], \[b=i+j-k\] and \[c=i-j+k\] then compute \[a\times \left( b\times c \right)\] and verify that it is perpendicular to a.
Answer
593.1k+ views
Hint: We will use the fact that dot product of two vectors p and q where \[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\] is given by \[p.q=x{{x}^{'}}+y{{y}^{'}}+z{{z}^{'}}\]; and the cross product is given by, \[p\times q=\left| \begin{matrix}
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\].
Complete step-by-step answer:
To compute the cross product of two vectors we have,
Let \[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\]
Then cross – product \[p\times q\] is given as,
\[p\times q=\left| \begin{matrix}
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\]
We have, \[a=2i+3j+4k\], \[b=i+j-k\] and \[c=i-j+k\].
First we will compute \[b\times c\] using formula stated above,
We have,
\[b\times c=\left| \begin{matrix}
i & j & k \\
1 & 1 & -1 \\
1 & -1 & 1 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& b\times c=i\left( 1-1 \right)+\left( -j \right)\left( +1+1 \right)+k\left( -1-1 \right) \\
& \Rightarrow b\times c=-2j-2k \\
\end{align}\]
Let, \[b\times c=d=-2j-2k\].
Then we want to compute \[a\times d\] now.
Using formula stated above we have,
\[a\times d=\left| \begin{matrix}
i & j & k \\
2 & 3 & 4 \\
0 & -2 & -2 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& a\times d=i\left( -6+8 \right)-j\left( -4 \right)+k\left( -4 \right) \\
& \Rightarrow a\times d=2i+4j-4k \\
\end{align}\]
So, the value of \[a\times \left( b\times c \right)=2i+4j-4k\], which is the required solution.
Finally we have to verify that obtained value of \[a\times \left( b\times c \right)\] is perpendicular to a.
Two vectors are said to be perpendicular if there dot product is zero.
Let \[a\times \left( b\times c \right)=e\]
Then, \[e=2i+4j-4k\]
And \[a=2i+3j+4k\]
Now dot product of two vectors when,
\[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\] is given by,
\[p.q=x{{x}^{'}}+y{{y}^{'}}+z{{z}^{'}}\]
Then using this we have,
\[\begin{align}
& a.e=2\left( 2 \right)+\left( 3 \right)\left( 4 \right)+\left( 4 \right)\left( -4 \right) \\
& a.e=4+12-16 \\
& a.e=16-16 \\
& a.e=0 \\
\end{align}\]
So, the dot product of \[a\times \left( b\times c \right)\] and a is zero. Hence they both are perpendicular. Hence verified.
Note: Another way to solve this question can be using the formula to vector triple product of cross product of three vectors which is given as, \[\overset{\to }{\mathop{a}}\,\times \left( \overset{\to }{\mathop{b}}\,\times \overset{\to }{\mathop{c}}\, \right)=\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{c}}\, \right)\overset{\to }{\mathop{b}}\,-\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\, \right)\overset{\to }{\mathop{c}}\,\], where a, b, c are three vectors. The answer anyway would be the same.
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\].
Complete step-by-step answer:
To compute the cross product of two vectors we have,
Let \[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\]
Then cross – product \[p\times q\] is given as,
\[p\times q=\left| \begin{matrix}
i & j & k \\
x & y & z \\
{{x}^{'}} & {{y}^{'}} & {{z}^{'}} \\
\end{matrix} \right|\]
We have, \[a=2i+3j+4k\], \[b=i+j-k\] and \[c=i-j+k\].
First we will compute \[b\times c\] using formula stated above,
We have,
\[b\times c=\left| \begin{matrix}
i & j & k \\
1 & 1 & -1 \\
1 & -1 & 1 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& b\times c=i\left( 1-1 \right)+\left( -j \right)\left( +1+1 \right)+k\left( -1-1 \right) \\
& \Rightarrow b\times c=-2j-2k \\
\end{align}\]
Let, \[b\times c=d=-2j-2k\].
Then we want to compute \[a\times d\] now.
Using formula stated above we have,
\[a\times d=\left| \begin{matrix}
i & j & k \\
2 & 3 & 4 \\
0 & -2 & -2 \\
\end{matrix} \right|\]
Opening the determinant along \[{{1}^{st}}\] row we get,
\[\begin{align}
& a\times d=i\left( -6+8 \right)-j\left( -4 \right)+k\left( -4 \right) \\
& \Rightarrow a\times d=2i+4j-4k \\
\end{align}\]
So, the value of \[a\times \left( b\times c \right)=2i+4j-4k\], which is the required solution.
Finally we have to verify that obtained value of \[a\times \left( b\times c \right)\] is perpendicular to a.
Two vectors are said to be perpendicular if there dot product is zero.
Let \[a\times \left( b\times c \right)=e\]
Then, \[e=2i+4j-4k\]
And \[a=2i+3j+4k\]
Now dot product of two vectors when,
\[p=xi+yj+zk\] and \[q={{x}^{'}}i+{{y}^{'}}j+{{z}^{'}}k\] is given by,
\[p.q=x{{x}^{'}}+y{{y}^{'}}+z{{z}^{'}}\]
Then using this we have,
\[\begin{align}
& a.e=2\left( 2 \right)+\left( 3 \right)\left( 4 \right)+\left( 4 \right)\left( -4 \right) \\
& a.e=4+12-16 \\
& a.e=16-16 \\
& a.e=0 \\
\end{align}\]
So, the dot product of \[a\times \left( b\times c \right)\] and a is zero. Hence they both are perpendicular. Hence verified.
Note: Another way to solve this question can be using the formula to vector triple product of cross product of three vectors which is given as, \[\overset{\to }{\mathop{a}}\,\times \left( \overset{\to }{\mathop{b}}\,\times \overset{\to }{\mathop{c}}\, \right)=\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{c}}\, \right)\overset{\to }{\mathop{b}}\,-\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\, \right)\overset{\to }{\mathop{c}}\,\], where a, b, c are three vectors. The answer anyway would be the same.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

