
If the value of $2\sin {{x}^{o}}-1=0$ and \[{{x}^{o}}\] is an acute angle. If $\cos {{x}^{o}}$ is $\sqrt{m}/2$, m is?
Answer
485.7k+ views
Hint: The values of trigonometric functions ($\sin \theta $ and $\cos \theta $) at different angles are
Solve the equation $2\sin {{x}^{o}}-1=0$ and find the value of $\sin {{x}^{o}}$. After this, compare it with the above given values and find the value of \[{{x}^{o}}\].Formula Used: Here we have used the values of \[\sin \theta \] and \[\cos \theta \] at \[\theta ={{30}^{o}}\]$\sin {{30}^{o}}=1/2$
$\cos {{30}^{o}}=\sqrt{3}/2$
Complete step-by-step answer:
\[2\sin {{x}^{o}}-1=0\]
$\Rightarrow$$2\sin {{x}^{o}}=1$
$\Rightarrow$$\sin {{x}^{o}}=1/2$ (1)
From the table given above (in the hint)
We know,
$\sin {{30}^{o}}=1/2$
From (1)
$\Rightarrow$ $\sin {{30}^{o}}=1/2=\sin {{x}^{o}}$
\[\Rightarrow \sin {{x}^{o}}=\sin {{30}^{o}}\]
\[\] $\Rightarrow {{x}^{o}}={{30}^{o}}$
Now,
$\cos {{x}^{o}}=\sqrt{m}/2$
We know,
$\cos {{30}^{o}}=\sqrt{3}/2$ {from table}
\[\cos {{x}^{o}}=\]$\cos {{30}^{o}}=\sqrt{3}/2=\sqrt{m}/2$
$\Rightarrow$ $\sqrt{3}/2=\sqrt{m}/2$
$\Rightarrow$ $\sqrt{m}=\sqrt{3}$
Squaring both sides
$\Rightarrow$ $m=3$
Additional Information
Values of trigonometric functions ($\sin \theta ,\cos \theta $ and $\tan \theta $) at different values of angles (${{0}^{o}},{{30}^{o}},{{45}^{o}},{{60}^{o}}$ and ${{90}^{o}}$).
Relation between trigonometric functions
$\begin{align}
& 1/\sin \theta =\cos ec\theta \\
& 1/\cos \theta =\sec \theta \\
& 1/\tan \theta =\cot \theta \\
\end{align}$
Note: The knowledge of the values of trigonometric functions at different angles is important for students to solve this question. The knowledge of algebra is also required to solve this question.
$\theta$ | \[{{0}^{o}}\] | ${{30}^{o}}$ | ${{45}^{o}}$ | ${{60}^{o}}$ | ${{90}^{o}}$ |
Sin$\theta$ | 0 | $\dfrac{1}{2}$ | $1/\sqrt{2}$ | $\sqrt{3}/2$ | 1 |
Cos$\theta$ | 1 | $\sqrt{3}/2$ | $1/\sqrt{2}$ | $\dfrac{1}{2}$ | 0 |
Solve the equation $2\sin {{x}^{o}}-1=0$ and find the value of $\sin {{x}^{o}}$. After this, compare it with the above given values and find the value of \[{{x}^{o}}\].Formula Used: Here we have used the values of \[\sin \theta \] and \[\cos \theta \] at \[\theta ={{30}^{o}}\]$\sin {{30}^{o}}=1/2$
$\cos {{30}^{o}}=\sqrt{3}/2$
Complete step-by-step answer:
\[2\sin {{x}^{o}}-1=0\]
$\Rightarrow$$2\sin {{x}^{o}}=1$
$\Rightarrow$$\sin {{x}^{o}}=1/2$ (1)
From the table given above (in the hint)
We know,
$\sin {{30}^{o}}=1/2$
From (1)
$\Rightarrow$ $\sin {{30}^{o}}=1/2=\sin {{x}^{o}}$
\[\Rightarrow \sin {{x}^{o}}=\sin {{30}^{o}}\]
\[\] $\Rightarrow {{x}^{o}}={{30}^{o}}$
Now,
$\cos {{x}^{o}}=\sqrt{m}/2$
We know,
$\cos {{30}^{o}}=\sqrt{3}/2$ {from table}
\[\cos {{x}^{o}}=\]$\cos {{30}^{o}}=\sqrt{3}/2=\sqrt{m}/2$
$\Rightarrow$ $\sqrt{3}/2=\sqrt{m}/2$
$\Rightarrow$ $\sqrt{m}=\sqrt{3}$
Squaring both sides
$\Rightarrow$ $m=3$
Additional Information
Values of trigonometric functions ($\sin \theta ,\cos \theta $ and $\tan \theta $) at different values of angles (${{0}^{o}},{{30}^{o}},{{45}^{o}},{{60}^{o}}$ and ${{90}^{o}}$).
$\theta$ | \[{{0}^{o}}\] | ${{30}^{o}}$ | ${{45}^{o}}$ | ${{60}^{o}}$ | ${{90}^{o}}$ |
Sin$\theta$ | 0 | $1/\sqrt{2}$ | $1/\sqrt{2}$ | $\sqrt{3}/2$ | 1 |
Cos$\theta$ | 1 | $\sqrt{3}/2$ | $1/\sqrt{2}$ | $1/\sqrt{2}$ | 0 |
Tan$\theta$ | 0 | 1/$\sqrt{3}$ | 1 | $\sqrt{3}$ | $\infty$ |
Relation between trigonometric functions
$\begin{align}
& 1/\sin \theta =\cos ec\theta \\
& 1/\cos \theta =\sec \theta \\
& 1/\tan \theta =\cot \theta \\
\end{align}$
Note: The knowledge of the values of trigonometric functions at different angles is important for students to solve this question. The knowledge of algebra is also required to solve this question.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
