
if the trace of a matrix is given as \[tr(A)=2+i\], then \[tr\left[ \left( 2-i \right)A \right]=\]
A. \[2+i\]
B. \[2-i\]
C. \[3\]
D. \[5\]
Answer
610.5k+ views
Hint:- \[tr(A)=2+i\] and we have to find \[tr\left[ \left( 2-i \right)A \right]\]. We know that the \[tr(cA)\] is given by the formulae \[tr(cA)=c\times tr(A)\]. As we know the values of \[c=2-i\] and \[tr(A)=2+i\]. So, by multiplying these two terms we will get the required \[tr\left[ \left( 2-i \right)A \right]\].
Complete step-by-step solution -
Given, \[tr(A)=2+i\]
We have to find the \[tr\left[ \left( 2-i \right)A \right]\]
We know that the formulae for \[tr(cA)\] is given by \[tr(cA)=c\times tr(A)\]. . . . . . .. . . (1)
So here in this problem \[c=2-i\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . (2)
And \[tr(A)=2+i\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3)
\[tr\left[ \left( 2-i \right)A \right]=\] \[(2-i)(2+i)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . (4)
\[={{2}^{2}}-{{i}^{2}}\]
\[=4+1\]
\[=5\]
So the correct option is option(D)
Note: The trace of a square matrix is defined as the sum of the elements on the main diagonal. Some other properties of trace of a matrix is that the trace is called linear mapping means \[tr(A+B)=tr(A)+tr(B)\]and \[tr(cA)=c\times tr(A)\].
Complete step-by-step solution -
Given, \[tr(A)=2+i\]
We have to find the \[tr\left[ \left( 2-i \right)A \right]\]
We know that the formulae for \[tr(cA)\] is given by \[tr(cA)=c\times tr(A)\]. . . . . . .. . . (1)
So here in this problem \[c=2-i\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . (2)
And \[tr(A)=2+i\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3)
\[tr\left[ \left( 2-i \right)A \right]=\] \[(2-i)(2+i)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . (4)
\[={{2}^{2}}-{{i}^{2}}\]
\[=4+1\]
\[=5\]
So the correct option is option(D)
Note: The trace of a square matrix is defined as the sum of the elements on the main diagonal. Some other properties of trace of a matrix is that the trace is called linear mapping means \[tr(A+B)=tr(A)+tr(B)\]and \[tr(cA)=c\times tr(A)\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

