
If the tangent at \[\left( {1,1} \right)\] on \[{y^2} = x{\left( {2 - x} \right)^2}\] meets the curve again at $P$, then find the coordinates of $P$?
Answer
522.9k+ views
Hint: Here in this question, we have to find the point P where the curve meets, to solve this first we have to find the slope at the given point by differentiating the equation of curve i.e., find \[m = {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,1} \right)}}\] and later substitute a value of slope in a equation of tangent \[y - {y_0} = m\left( {x - {x_0}} \right)\] where \[\left( {{x_0},{y_0}} \right)\] is the point where tangent line passes through and further simplify by method of factorization we get the required solution.
Complete step by step solution:
The tangent line to a curve at a given point is a straight line that just "touches" the curve at that point.
Considering the given equation of curve
\[ {y^2} = x{\left( {2 - x} \right)^2}\]---------(1)
Expand the RHS using a algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow \,\,{y^2} = x\left( {{2^2} + {x^2} - 2 \cdot 2 \cdot x} \right)\]
\[ \Rightarrow \,\,{y^2} = x\left( {4 + {x^2} - 4x} \right)\]
Multiplying $x$ into the parenthesis on RHS, we get.
\[ \Rightarrow \,\,{y^2} = 4x + {x^3} - 4{x^2}\]------(2)
The tangent line passes at the point \[\left( {1,1} \right)\]
Now, differentiate the equation (2) with respect to x , and we get a slope of the line.
\[ \Rightarrow \,\,\dfrac{d}{{dx}}\left( {{y^2}} \right) = \dfrac{d}{{dx}}\left( {4x + {x^3} - 4{x^2}} \right)\]
\[ \Rightarrow \,\,\dfrac{d}{{dx}}\left( {{y^2}} \right) = 4\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {{x^3}} \right) - 4\dfrac{d}{{dx}}\left( {{x^2}} \right)\]
Differentiate using a formula \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\], then
\[ \Rightarrow \,\,2y\dfrac{{dy}}{{dx}} = 4\left( 1 \right) + 3{x^2} - 4\left( {2x} \right)\]
\[ \Rightarrow \,\,2y\dfrac{{dy}}{{dx}} = 4 + 3{x^2} - 8x\]
Divide both side by 2y, then
\[ \Rightarrow \,\,\dfrac{{dy}}{{dx}} = \dfrac{{4 + 3{x^2} - 8x}}{{2y}}\]
Now find the slope \[m = \dfrac{{dy}}{{dx}}\] at the point \[\left( {1,1} \right)\], then
\[ \Rightarrow \,\,m = {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,1} \right)}} = \dfrac{{4 + 3{{\left( 1 \right)}^2} - 8\left( 1 \right)}}{{2\left( 1 \right)}}\]
\[ \Rightarrow \,\,m = {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,1} \right)}} = \dfrac{{4 + 3 - 8}}{2}\]
\[ \Rightarrow \,\,m = {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,1} \right)}} = - \dfrac{1}{2}\]
Now, put equation of tangent lies at the point \[\left( {1,1} \right)\] is:
The equation of tangent is \[y - {y_0} = m\left( {x - {x_0}} \right)\]
Here \[{y_0} = 1\], \[{x_0} = 1\] and \[m = - \dfrac{1}{2}\], on substituting we get
\[ \Rightarrow \,\,y - 1 = \left( { - \dfrac{1}{2}} \right)\left( {x - 1} \right)\]
Multiply both side by 2, then
\[ \Rightarrow \,\,2\left( {y - 1} \right) = - 1\left( {x - 1} \right)\]
On simplification, we get
\[ \Rightarrow \,\,2y - 2 = - x + 1\]
Take all term in RHS to LHS, then
\[ \Rightarrow \,\,2y - 2 + x - 1 = 0\]
\[ \Rightarrow \,\,x + 2y - 3 = 0\]--------(3)
Add 3 and subtract 2y on both sides, then
\[ \Rightarrow \,\,x = 3 - 2y\]--------(4)
Now, substitute equation (4) in the equation of cure i.e., equation (1), we get.
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( {2 - \left( {3 - 2y} \right)} \right)^2}\]
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( {2 - 3 + 2y} \right)^2}\]
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( { - 1 + 2y} \right)^2}\]
Or
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( {2y - 1} \right)^2}\]
Expand RHS using a algebraic identity: \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right)\left( {{{\left( {2y} \right)}^2} + {1^2} - 2\left( {2y} \right)1} \right)\]
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right)\left( {4{y^2} + 1 - 4y} \right)\]
\[ \Rightarrow \,\,{y^2} = 3\left( {4{y^2} + 1 - 4y} \right) - 2y\left( {4{y^2} + 1 - 4y} \right)\]
On simplification, we have
\[ \Rightarrow \,\,{y^2} = 12{y^2} + 3 - 12y - 8{y^3} - 2y + 8{y^2}\]
Take RHS in to LHS, then
\[ \Rightarrow \,\,{y^2} - 12{y^2} - 3 + 12y + 8{y^3} + 2y - 8{y^2} = 0\]
\[ \Rightarrow \,\,8{y^3} - 19{y^2} + 14y - 3 = 0\]
It can be re-written as
\[ \Rightarrow \,\,8{y^3} - 8{y^2} - 11{y^2} + 11y + 3y - 3 = 0\]
Take out the GCD, then
\[ \Rightarrow \,\,8{y^2}\left( {y - 1} \right) - 11y\left( {y - 1} \right) + 3\left( {y - 1} \right) = 0\]
Take \[\left( {y - 1} \right)\] as common, then
\[ \Rightarrow \,\,\left( {y - 1} \right)\left( {8{y^2} - 11y + 3} \right) = 0\]-----(5)
Now, factorize
\[ \Rightarrow \,\,8{y^2} - 11y + 3\]
\[ \Rightarrow \,\,8{y^2} - 8y - 3y + 3\]
\[ \Rightarrow \,\,8y\left( {y - 1} \right) - 3\left( {y - 1} \right)\]
\[ \Rightarrow \,\,\left( {y - 1} \right)\left( {8y - 3} \right)\]
Then, equation (5) becomes
\[ \Rightarrow \,\,\left( {y - 1} \right)\left( {y - 1} \right)\left( {8y - 3} \right) = 0\]
Then,
\[ \Rightarrow \,\,y = 1,\,1,\,\dfrac{3}{8}\]
Take the value \[y = \dfrac{3}{8}\]
Substituting $y$ value in equation (4), then
\[ \Rightarrow \,\,x = 3 - 2\left( {\dfrac{3}{8}} \right)\]
\[ \Rightarrow \,\,x = 3 - \dfrac{3}{4}\]
Take 4 as LCM, then
\[ \Rightarrow \,\,x = \dfrac{{12 - 3}}{4}\]
\[ \Rightarrow \,\,x = \dfrac{9}{4}\]
Therefore, the coordinates of point $P$ is \[\left( {x,y} \right) = \left( {\dfrac{9}{4},\dfrac{3}{8}} \right)\].
Note:
The concept of the equation of tangent comes under the concept of application of derivatives. Here the major part is differentiation must know the standard differentiation formulas and we should know about the general equation of a line tangent. Hence these types of problems are solved by the above procedure and we can also find the equation of tangent using the above procedure.
Complete step by step solution:
The tangent line to a curve at a given point is a straight line that just "touches" the curve at that point.
Considering the given equation of curve
\[ {y^2} = x{\left( {2 - x} \right)^2}\]---------(1)
Expand the RHS using a algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow \,\,{y^2} = x\left( {{2^2} + {x^2} - 2 \cdot 2 \cdot x} \right)\]
\[ \Rightarrow \,\,{y^2} = x\left( {4 + {x^2} - 4x} \right)\]
Multiplying $x$ into the parenthesis on RHS, we get.
\[ \Rightarrow \,\,{y^2} = 4x + {x^3} - 4{x^2}\]------(2)
The tangent line passes at the point \[\left( {1,1} \right)\]
Now, differentiate the equation (2) with respect to x , and we get a slope of the line.
\[ \Rightarrow \,\,\dfrac{d}{{dx}}\left( {{y^2}} \right) = \dfrac{d}{{dx}}\left( {4x + {x^3} - 4{x^2}} \right)\]
\[ \Rightarrow \,\,\dfrac{d}{{dx}}\left( {{y^2}} \right) = 4\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {{x^3}} \right) - 4\dfrac{d}{{dx}}\left( {{x^2}} \right)\]
Differentiate using a formula \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\], then
\[ \Rightarrow \,\,2y\dfrac{{dy}}{{dx}} = 4\left( 1 \right) + 3{x^2} - 4\left( {2x} \right)\]
\[ \Rightarrow \,\,2y\dfrac{{dy}}{{dx}} = 4 + 3{x^2} - 8x\]
Divide both side by 2y, then
\[ \Rightarrow \,\,\dfrac{{dy}}{{dx}} = \dfrac{{4 + 3{x^2} - 8x}}{{2y}}\]
Now find the slope \[m = \dfrac{{dy}}{{dx}}\] at the point \[\left( {1,1} \right)\], then
\[ \Rightarrow \,\,m = {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,1} \right)}} = \dfrac{{4 + 3{{\left( 1 \right)}^2} - 8\left( 1 \right)}}{{2\left( 1 \right)}}\]
\[ \Rightarrow \,\,m = {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,1} \right)}} = \dfrac{{4 + 3 - 8}}{2}\]
\[ \Rightarrow \,\,m = {\left( {\dfrac{{dy}}{{dx}}} \right)_{\left( {1,1} \right)}} = - \dfrac{1}{2}\]
Now, put equation of tangent lies at the point \[\left( {1,1} \right)\] is:
The equation of tangent is \[y - {y_0} = m\left( {x - {x_0}} \right)\]
Here \[{y_0} = 1\], \[{x_0} = 1\] and \[m = - \dfrac{1}{2}\], on substituting we get
\[ \Rightarrow \,\,y - 1 = \left( { - \dfrac{1}{2}} \right)\left( {x - 1} \right)\]
Multiply both side by 2, then
\[ \Rightarrow \,\,2\left( {y - 1} \right) = - 1\left( {x - 1} \right)\]
On simplification, we get
\[ \Rightarrow \,\,2y - 2 = - x + 1\]
Take all term in RHS to LHS, then
\[ \Rightarrow \,\,2y - 2 + x - 1 = 0\]
\[ \Rightarrow \,\,x + 2y - 3 = 0\]--------(3)
Add 3 and subtract 2y on both sides, then
\[ \Rightarrow \,\,x = 3 - 2y\]--------(4)
Now, substitute equation (4) in the equation of cure i.e., equation (1), we get.
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( {2 - \left( {3 - 2y} \right)} \right)^2}\]
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( {2 - 3 + 2y} \right)^2}\]
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( { - 1 + 2y} \right)^2}\]
Or
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right){\left( {2y - 1} \right)^2}\]
Expand RHS using a algebraic identity: \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right)\left( {{{\left( {2y} \right)}^2} + {1^2} - 2\left( {2y} \right)1} \right)\]
\[ \Rightarrow \,\,{y^2} = \left( {3 - 2y} \right)\left( {4{y^2} + 1 - 4y} \right)\]
\[ \Rightarrow \,\,{y^2} = 3\left( {4{y^2} + 1 - 4y} \right) - 2y\left( {4{y^2} + 1 - 4y} \right)\]
On simplification, we have
\[ \Rightarrow \,\,{y^2} = 12{y^2} + 3 - 12y - 8{y^3} - 2y + 8{y^2}\]
Take RHS in to LHS, then
\[ \Rightarrow \,\,{y^2} - 12{y^2} - 3 + 12y + 8{y^3} + 2y - 8{y^2} = 0\]
\[ \Rightarrow \,\,8{y^3} - 19{y^2} + 14y - 3 = 0\]
It can be re-written as
\[ \Rightarrow \,\,8{y^3} - 8{y^2} - 11{y^2} + 11y + 3y - 3 = 0\]
Take out the GCD, then
\[ \Rightarrow \,\,8{y^2}\left( {y - 1} \right) - 11y\left( {y - 1} \right) + 3\left( {y - 1} \right) = 0\]
Take \[\left( {y - 1} \right)\] as common, then
\[ \Rightarrow \,\,\left( {y - 1} \right)\left( {8{y^2} - 11y + 3} \right) = 0\]-----(5)
Now, factorize
\[ \Rightarrow \,\,8{y^2} - 11y + 3\]
\[ \Rightarrow \,\,8{y^2} - 8y - 3y + 3\]
\[ \Rightarrow \,\,8y\left( {y - 1} \right) - 3\left( {y - 1} \right)\]
\[ \Rightarrow \,\,\left( {y - 1} \right)\left( {8y - 3} \right)\]
Then, equation (5) becomes
\[ \Rightarrow \,\,\left( {y - 1} \right)\left( {y - 1} \right)\left( {8y - 3} \right) = 0\]
Then,
\[ \Rightarrow \,\,y = 1,\,1,\,\dfrac{3}{8}\]
Take the value \[y = \dfrac{3}{8}\]
Substituting $y$ value in equation (4), then
\[ \Rightarrow \,\,x = 3 - 2\left( {\dfrac{3}{8}} \right)\]
\[ \Rightarrow \,\,x = 3 - \dfrac{3}{4}\]
Take 4 as LCM, then
\[ \Rightarrow \,\,x = \dfrac{{12 - 3}}{4}\]
\[ \Rightarrow \,\,x = \dfrac{9}{4}\]
Therefore, the coordinates of point $P$ is \[\left( {x,y} \right) = \left( {\dfrac{9}{4},\dfrac{3}{8}} \right)\].
Note:
The concept of the equation of tangent comes under the concept of application of derivatives. Here the major part is differentiation must know the standard differentiation formulas and we should know about the general equation of a line tangent. Hence these types of problems are solved by the above procedure and we can also find the equation of tangent using the above procedure.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

