
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum when the angle of between them is \[\dfrac{\pi }{3}.\]
Answer
589.2k+ views
Hint: For solving this question, first let the length of the hypotenuse of the right triangle be ‘x’ and the height of the right angle be ‘y’. By using the Pythagoras theorem, we find the base of the right-angle triangle and then the area of a triangle. By using this methodology, we get the value of x and y and proved that the area of the triangle is maximum when the angle of between them is $\dfrac{\pi }{3}.$
Complete step-by-step soltuion -
Let, the height of the hypotenuse of the right-angle triangle be ‘x’ and the height of the right-angle triangle be ‘y’.
By applying the Pythagoras theorem which can be stated as: ${{h}^{2}}={{b}^{2}}+{{p}^{2}}$
On putting h = x and p = y,
The base of the right-angled triangle is:
$\begin{align}
& {{x}^{2}}={{b}^{2}}+{{y}^{2}} \\
& {{b}^{2}}={{x}^{2}}-{{y}^{2}} \\
& \therefore b=\sqrt{{{x}^{2}}-{{y}^{2}}} \\
\end{align}$
Then, the area of the triangle $=\dfrac{1}{2}\times base\times height$
Area of the triangle $=\dfrac{1}{2}\times \sqrt{{{x}^{2}}-{{y}^{2}}}\times y$
But it is given,
$\begin{align}
& x+y=p \\
& \therefore x=p-y \\
\end{align}$
Putting the value of x in the area of the right-angle triangle,
$\begin{align}
& \text{Area}=\dfrac{1}{2}\times \sqrt{{{\left( p-y \right)}^{2}}-{{y}^{2}}}\times y \\
& \text{Area}=\dfrac{1}{2}\times y\sqrt{{{p}^{2}}+{{y}^{2}}-2py-{{y}^{2}}} \\
& \text{Area}=\dfrac{1}{2}\times y\times \sqrt{{{p}^{2}}-2py} \\
\end{align}$
Squaring both the sides, we get:
$\begin{align}
& {{\left( \text{Area} \right)}^{2}}=\dfrac{1}{4}\times {{y}^{2}}\times \left( {{p}^{2}}-2py \right) \\
& {A}'=\dfrac{1}{4}\times {{y}^{2}}\times \left( {{p}^{2}}-2py \right) \\
& {A}'=\dfrac{1}{4}{{p}^{2}}{{y}^{2}}-\dfrac{1}{2}p{{y}^{3}} \\
\end{align}$
For maximum area and minimum area,
$\begin{align}
& \dfrac{d{A}'}{dy}=0 \\
& \dfrac{d{A}'}{dy}=\dfrac{1}{4}\times 2{{p}^{2}}y-\dfrac{1}{2}\times 3p{{y}^{2}} \\
& \dfrac{d{A}'}{dy}=\dfrac{1}{2}{{p}^{2}}y-\dfrac{3}{2}p{{y}^{2}} \\
& \dfrac{1}{2}{{p}^{2}}y=\dfrac{3}{2}p{{y}^{2}} \\
& y=\dfrac{p}{3} \\
& x=p-y \\
& x=p-\dfrac{p}{3}=\dfrac{2p}{3} \\
\end{align}$
For checking the area maximum,
$\begin{align}
& \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{d}{dy}\left( \dfrac{1}{4}\times 2{{p}^{2}}y-\dfrac{1}{2}\times 3p{{y}^{2}} \right) \\
& \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{1}{2}{{p}^{2}}-\dfrac{1}{2}\times 3p\times 2y \\
& \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{1}{2}{{p}^{2}}-3py \\
\end{align}$
Putting $y=\dfrac{p}{3}$, we get
$\begin{align}
& \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{1}{2}{{p}^{2}}-3py \\
& \Rightarrow \dfrac{1}{2}{{p}^{2}}-3p\left( \dfrac{p}{3} \right) \\
& \Rightarrow \dfrac{1}{2}{{p}^{2}}-{{p}^{2}} \\
& \Rightarrow -\dfrac{1}{2}{{p}^{2}} \\
& \therefore \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}<0 \\
\end{align}$
Here, the area of the triangle is maximum when
$x=\dfrac{2p}{3}\text{ and }y=\dfrac{p}{3}$
Cosine of the right-angle triangle is the ratio of base to hypotenuse. In our figure, hypotenuse = x and base = y, so
$\begin{align}
& \cos \theta =\dfrac{y}{x} \\
& \cos \theta =\dfrac{\dfrac{p}{3}}{2\times \dfrac{p}{3}} \\
& \cos \theta =\dfrac{1}{2} \\
\end{align}$
Therefore, the value of $\cos \theta $ is $\dfrac{1}{2}$, when $\theta =\dfrac{\pi }{3}$.
Hence, the area is maximum if the angle between the hypotenuse and the side is $\dfrac{\pi }{3}$.
Note: Students must be careful while applying the condition for maximum area. They must use the concept of the second derivative to prove that the area is maximum at the particular value of y. This is the key step and it should not be avoided as most people avoid the second derivative and proceed after the result obtained in the first derivative only.
Complete step-by-step soltuion -
Let, the height of the hypotenuse of the right-angle triangle be ‘x’ and the height of the right-angle triangle be ‘y’.
By applying the Pythagoras theorem which can be stated as: ${{h}^{2}}={{b}^{2}}+{{p}^{2}}$
On putting h = x and p = y,
The base of the right-angled triangle is:
$\begin{align}
& {{x}^{2}}={{b}^{2}}+{{y}^{2}} \\
& {{b}^{2}}={{x}^{2}}-{{y}^{2}} \\
& \therefore b=\sqrt{{{x}^{2}}-{{y}^{2}}} \\
\end{align}$
Then, the area of the triangle $=\dfrac{1}{2}\times base\times height$
Area of the triangle $=\dfrac{1}{2}\times \sqrt{{{x}^{2}}-{{y}^{2}}}\times y$
But it is given,
$\begin{align}
& x+y=p \\
& \therefore x=p-y \\
\end{align}$
Putting the value of x in the area of the right-angle triangle,
$\begin{align}
& \text{Area}=\dfrac{1}{2}\times \sqrt{{{\left( p-y \right)}^{2}}-{{y}^{2}}}\times y \\
& \text{Area}=\dfrac{1}{2}\times y\sqrt{{{p}^{2}}+{{y}^{2}}-2py-{{y}^{2}}} \\
& \text{Area}=\dfrac{1}{2}\times y\times \sqrt{{{p}^{2}}-2py} \\
\end{align}$
Squaring both the sides, we get:
$\begin{align}
& {{\left( \text{Area} \right)}^{2}}=\dfrac{1}{4}\times {{y}^{2}}\times \left( {{p}^{2}}-2py \right) \\
& {A}'=\dfrac{1}{4}\times {{y}^{2}}\times \left( {{p}^{2}}-2py \right) \\
& {A}'=\dfrac{1}{4}{{p}^{2}}{{y}^{2}}-\dfrac{1}{2}p{{y}^{3}} \\
\end{align}$
For maximum area and minimum area,
$\begin{align}
& \dfrac{d{A}'}{dy}=0 \\
& \dfrac{d{A}'}{dy}=\dfrac{1}{4}\times 2{{p}^{2}}y-\dfrac{1}{2}\times 3p{{y}^{2}} \\
& \dfrac{d{A}'}{dy}=\dfrac{1}{2}{{p}^{2}}y-\dfrac{3}{2}p{{y}^{2}} \\
& \dfrac{1}{2}{{p}^{2}}y=\dfrac{3}{2}p{{y}^{2}} \\
& y=\dfrac{p}{3} \\
& x=p-y \\
& x=p-\dfrac{p}{3}=\dfrac{2p}{3} \\
\end{align}$
For checking the area maximum,
$\begin{align}
& \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{d}{dy}\left( \dfrac{1}{4}\times 2{{p}^{2}}y-\dfrac{1}{2}\times 3p{{y}^{2}} \right) \\
& \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{1}{2}{{p}^{2}}-\dfrac{1}{2}\times 3p\times 2y \\
& \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{1}{2}{{p}^{2}}-3py \\
\end{align}$
Putting $y=\dfrac{p}{3}$, we get
$\begin{align}
& \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}=\dfrac{1}{2}{{p}^{2}}-3py \\
& \Rightarrow \dfrac{1}{2}{{p}^{2}}-3p\left( \dfrac{p}{3} \right) \\
& \Rightarrow \dfrac{1}{2}{{p}^{2}}-{{p}^{2}} \\
& \Rightarrow -\dfrac{1}{2}{{p}^{2}} \\
& \therefore \dfrac{{{d}^{2}}{A}'}{d{{y}^{2}}}<0 \\
\end{align}$
Here, the area of the triangle is maximum when
$x=\dfrac{2p}{3}\text{ and }y=\dfrac{p}{3}$
Cosine of the right-angle triangle is the ratio of base to hypotenuse. In our figure, hypotenuse = x and base = y, so
$\begin{align}
& \cos \theta =\dfrac{y}{x} \\
& \cos \theta =\dfrac{\dfrac{p}{3}}{2\times \dfrac{p}{3}} \\
& \cos \theta =\dfrac{1}{2} \\
\end{align}$
Therefore, the value of $\cos \theta $ is $\dfrac{1}{2}$, when $\theta =\dfrac{\pi }{3}$.
Hence, the area is maximum if the angle between the hypotenuse and the side is $\dfrac{\pi }{3}$.
Note: Students must be careful while applying the condition for maximum area. They must use the concept of the second derivative to prove that the area is maximum at the particular value of y. This is the key step and it should not be avoided as most people avoid the second derivative and proceed after the result obtained in the first derivative only.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

