
If the sum of an infinite G.P be $ 9 $ and the sum of first two terms be $ 5 $ , then the common ratio is
A. $ \dfrac{1}{3} $
B. $ \dfrac{3}{2} $
C. $ \dfrac{3}{4} $
D. $ \dfrac{2}{3} $
Answer
511.8k+ views
Hint: First, we shall analyze the given information so that we are able to solve the problem. Here, we are given the sum of an infinite G.P and the sum of the first two terms. We call a sequence a geometric progression when each succeeding term is obtained by multiplying each preceding with the constant value. That constant value is called the common ratio of G.P, and $ a $ is the first term of G.P and $ r $ is the common ratio of G.P. We are asked to calculate the common ratio.
Formula to be used:
The formula to obtain the sum of an infinite G.P is as follows.
The sum of an infinite G.P, $ S = \dfrac{a}{{1 - r}} $ where $ a $ is the first term of G.P and $ r $ is the common ratio of G.P.
Complete step by step answer:
It is given that the sum of an infinite G.P is $ 9 $ .
We shall apply the formula $ S = \dfrac{a}{{1 - r}} $ here.
Then, we get $ 9 = \dfrac{a}{{1 - r}} $
$ \Rightarrow 9\left( {1 - r} \right) = a $
$ \Rightarrow 9 - 9r = a $
$ \Rightarrow a = 9 - 9r $ ……….. $ \left( 1 \right) $
Also, we are given that the sum of the first two terms is $ 5 $
The first two terms of G.P will be $ a,ar $
Hence, we get $ a + ar = 5 $
\[ \Rightarrow ar = 5 - a\]
\[ \Rightarrow r = \dfrac{{5 - a}}{a}\] ……… $ \left( 2 \right) $
Now, we shall substitute $ \left( 2 \right) $ in $ \left( 1 \right) $ .
$ \Rightarrow a = 9 - 9\left( {\dfrac{{5 - a}}{a}} \right) $
$ \Rightarrow a = \dfrac{{9a - 45 + 9a}}{a} $
$ \Rightarrow {a^2} = 9a - 45 + 9a $
$ \Rightarrow {a^2} - 18a + 45 = 0 $
We shall split the middle term.
$ \Rightarrow {a^2} - 15a - 3a + 45 = 0 $
$ \Rightarrow a\left( {a - 15} \right) - 3\left( {a - 15} \right) = 0 $
$ \Rightarrow \left( {a - 3} \right)\left( {a - 15} \right) = 0 $
Hence we get $ a = 3 $ or $ a = 15 $ .
Now, from $ \left( 2 \right) $ we get
\[ \Rightarrow r = \dfrac{{5 - 3}}{3}orr = \dfrac{{5 - 15}}{{15}}\]
\[ \Rightarrow r = \dfrac{2}{3}\] or\[r = \dfrac{{ - 12}}{{15}}\]
Here \[r = \dfrac{2}{3}\] is possible.
So, the correct answer is “Option D”.
Note: The common ratio will be negative only if the given geometric progression contains alternate positive and negative terms. Since there are not any details about the alternate terms, we choose\[r = \dfrac{2}{3}\].
Also, if we are given the sum of $ {n^{th}} $ terms of G.P, then we need to apply the formula $ {S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 $ and $ {S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}},r \ne 1 $ where $ a $ is the first term of G.P, $ r $ is the common ratio of G.P and is $ n $ the number of terms.
Formula to be used:
The formula to obtain the sum of an infinite G.P is as follows.
The sum of an infinite G.P, $ S = \dfrac{a}{{1 - r}} $ where $ a $ is the first term of G.P and $ r $ is the common ratio of G.P.
Complete step by step answer:
It is given that the sum of an infinite G.P is $ 9 $ .
We shall apply the formula $ S = \dfrac{a}{{1 - r}} $ here.
Then, we get $ 9 = \dfrac{a}{{1 - r}} $
$ \Rightarrow 9\left( {1 - r} \right) = a $
$ \Rightarrow 9 - 9r = a $
$ \Rightarrow a = 9 - 9r $ ……….. $ \left( 1 \right) $
Also, we are given that the sum of the first two terms is $ 5 $
The first two terms of G.P will be $ a,ar $
Hence, we get $ a + ar = 5 $
\[ \Rightarrow ar = 5 - a\]
\[ \Rightarrow r = \dfrac{{5 - a}}{a}\] ……… $ \left( 2 \right) $
Now, we shall substitute $ \left( 2 \right) $ in $ \left( 1 \right) $ .
$ \Rightarrow a = 9 - 9\left( {\dfrac{{5 - a}}{a}} \right) $
$ \Rightarrow a = \dfrac{{9a - 45 + 9a}}{a} $
$ \Rightarrow {a^2} = 9a - 45 + 9a $
$ \Rightarrow {a^2} - 18a + 45 = 0 $
We shall split the middle term.
$ \Rightarrow {a^2} - 15a - 3a + 45 = 0 $
$ \Rightarrow a\left( {a - 15} \right) - 3\left( {a - 15} \right) = 0 $
$ \Rightarrow \left( {a - 3} \right)\left( {a - 15} \right) = 0 $
Hence we get $ a = 3 $ or $ a = 15 $ .
Now, from $ \left( 2 \right) $ we get
\[ \Rightarrow r = \dfrac{{5 - 3}}{3}orr = \dfrac{{5 - 15}}{{15}}\]
\[ \Rightarrow r = \dfrac{2}{3}\] or\[r = \dfrac{{ - 12}}{{15}}\]
Here \[r = \dfrac{2}{3}\] is possible.
So, the correct answer is “Option D”.
Note: The common ratio will be negative only if the given geometric progression contains alternate positive and negative terms. Since there are not any details about the alternate terms, we choose\[r = \dfrac{2}{3}\].
Also, if we are given the sum of $ {n^{th}} $ terms of G.P, then we need to apply the formula $ {S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},r > 1 $ and $ {S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}},r \ne 1 $ where $ a $ is the first term of G.P, $ r $ is the common ratio of G.P and is $ n $ the number of terms.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

