
If the relation holds true $ ab + bc + ca = 0 $, then the value of $ \dfrac{1}{{{a^2} - bc}} + \dfrac{1}{{{b^2} - ca}} + \dfrac{1}{{{c^2} - ab}} $ will be
$
(a){\text{ - 1}} \\
(b){\text{ a + b + c}} \\
(c){\text{ abc}} \\
(d){\text{ 0}} \\
$
Answer
613.5k+ views
Hint: In this problem use the given relation $ ab + bc + ca = 0 $ , to find bc in terms of ab and ac, then ca in terms of ab and bc and finally ab in terms of bc and ca. Then simplify the expression $ \dfrac{1}{{{a^2} - bc}} + \dfrac{1}{{{b^2} - ca}} + \dfrac{1}{{{c^2} - ab}} $, by using the given relation. This will help to get the right answer.
Complete step-by-step answer:
Given equation is
$ \dfrac{1}{{{a^2} - bc}} + \dfrac{1}{{{b^2} - ca}} + \dfrac{1}{{{c^2} - ab}} $ ....................... (1)
Now it is given that $ ab + bc + ca = 0 $ ....................... (2)
So from equation (2)
bc = - (ab + ca)
Now $ \left( {{a^2} - bc} \right) $ is written as,
$ \Rightarrow \left( {{a^2} - bc} \right) = \left( {{a^2} + ab + ca} \right) = a\left( {a + b + c} \right) $ ....................... (3)
Similarly,
$ \Rightarrow \left( {{b^2} - ca} \right) = \left( {{b^2} + ab + bc} \right) = b\left( {a + b + c} \right) $ ....................... (4)
$ \Rightarrow \left( {{c^2} - ab} \right) = \left( {{c^2} + bc + ca} \right) = c\left( {a + b + c} \right) $ .......................... (5)
So from equation (1) we have, $ \Rightarrow \dfrac{1}{{{a^2} - bc}} + \dfrac{1}{{{b^2} - ca}} + \dfrac{1}{{{c^2} - ab}} = \dfrac{1}{{a\left( {a + b + c} \right)}} + \dfrac{1}{{b\left( {a + b + c} \right)}} + \dfrac{1}{{c\left( {a + b + c} \right)}} $
Now simplify the above equation we have
$ \Rightarrow \dfrac{1}{{a\left( {a + b + c} \right)}} + \dfrac{1}{{b\left( {a + b + c} \right)}} + \dfrac{1}{{c\left( {a + b + c} \right)}} = \dfrac{1}{{\left( {a + b + c} \right)}}\left[ {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right] $
$ \Rightarrow \dfrac{1}{{\left( {a + b + c} \right)}}\left[ {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right] = \dfrac{1}{{\left( {a + b + c} \right)}}\left[ {\dfrac{{bc + ac + ab}}{{abc}}} \right] $
Now from equation (2) we have,
$ \Rightarrow \dfrac{1}{{\left( {a + b + c} \right)}}\left[ {\dfrac{{bc + ac + ab}}{{abc}}} \right] = \dfrac{1}{{\left( {a + b + c} \right)}}\left[ {\dfrac{0}{{abc}}} \right] = 0 $
So this is the required answer.
Hence option (D) is correct.
Note – Such problems are solemnly based upon equation manipulation, we just need to use one relation to manipulate the required expression and to break it further till the point we get the least simplified form. Then simply putting the values from a given relation helps solving problems of this kind.
Complete step-by-step answer:
Given equation is
$ \dfrac{1}{{{a^2} - bc}} + \dfrac{1}{{{b^2} - ca}} + \dfrac{1}{{{c^2} - ab}} $ ....................... (1)
Now it is given that $ ab + bc + ca = 0 $ ....................... (2)
So from equation (2)
bc = - (ab + ca)
Now $ \left( {{a^2} - bc} \right) $ is written as,
$ \Rightarrow \left( {{a^2} - bc} \right) = \left( {{a^2} + ab + ca} \right) = a\left( {a + b + c} \right) $ ....................... (3)
Similarly,
$ \Rightarrow \left( {{b^2} - ca} \right) = \left( {{b^2} + ab + bc} \right) = b\left( {a + b + c} \right) $ ....................... (4)
$ \Rightarrow \left( {{c^2} - ab} \right) = \left( {{c^2} + bc + ca} \right) = c\left( {a + b + c} \right) $ .......................... (5)
So from equation (1) we have, $ \Rightarrow \dfrac{1}{{{a^2} - bc}} + \dfrac{1}{{{b^2} - ca}} + \dfrac{1}{{{c^2} - ab}} = \dfrac{1}{{a\left( {a + b + c} \right)}} + \dfrac{1}{{b\left( {a + b + c} \right)}} + \dfrac{1}{{c\left( {a + b + c} \right)}} $
Now simplify the above equation we have
$ \Rightarrow \dfrac{1}{{a\left( {a + b + c} \right)}} + \dfrac{1}{{b\left( {a + b + c} \right)}} + \dfrac{1}{{c\left( {a + b + c} \right)}} = \dfrac{1}{{\left( {a + b + c} \right)}}\left[ {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right] $
$ \Rightarrow \dfrac{1}{{\left( {a + b + c} \right)}}\left[ {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right] = \dfrac{1}{{\left( {a + b + c} \right)}}\left[ {\dfrac{{bc + ac + ab}}{{abc}}} \right] $
Now from equation (2) we have,
$ \Rightarrow \dfrac{1}{{\left( {a + b + c} \right)}}\left[ {\dfrac{{bc + ac + ab}}{{abc}}} \right] = \dfrac{1}{{\left( {a + b + c} \right)}}\left[ {\dfrac{0}{{abc}}} \right] = 0 $
So this is the required answer.
Hence option (D) is correct.
Note – Such problems are solemnly based upon equation manipulation, we just need to use one relation to manipulate the required expression and to break it further till the point we get the least simplified form. Then simply putting the values from a given relation helps solving problems of this kind.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

