
If the rate of decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}$ during a certain time internal is $2.4 \times {10^{ - 4}}\,{\text{mol}}\,\,{{\text{L}}^{ - 1}}{\min ^{ - 1}}$ .
${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\, \to \,{\text{2N}}{{\text{O}}_{\text{2}}}\,{\text{ + }}\,\dfrac{{\text{1}}}{{\text{2}}}{{\text{O}}_{\text{2}}}$
What is the rate of formation of ${\text{N}}{{\text{O}}_{\text{2}}}$ and ${{\text{O}}_{\text{2}}}$ ${\text{mol}}\,\,{{\text{L}}^{ - 1}}{\min ^{ - 1}}$.
A. $2.3 \times {10^{ - 5}}$ and $1.2 \times {10^{ - 5}}$ respectively.
B. $3.8 \times {10^{ - 4}}$ and $0.6 \times {10^{ - 4}}$ respectively.
C. $2.4 \times {10^{ - 4}}$ and $1.5 \times {10^{ - 4}}$ respectively.
D. $4.8 \times {10^{ - 4}}$ and $1.2 \times {10^{ - 4}}$ respectively.
Answer
554.7k+ views
Hint: Rate of reaction is the change in concentration of reactant and product with per unit time. The rate of decomposition of the reactant with stoichiometry is equal to the rate of formation of the product with stoichiometry. So, we can put the rate of formation equal to the rate of decomposition.
Formula used: Rate of reaction${\text{ = }}\, \pm \dfrac{{\text{1}}}{{{\text{stoichiometry}}}}\dfrac{{{\text{d}}\left[ {{\text{conc}}{\text{.}}} \right]}}{{{\text{dt}}}}$
Complete step by step answer:
The rate of reaction is defined as the change in concentration of reactant and product with time. The rate of reaction includes the rate of formation of product and rate of decomposition of reactant.
The given reaction is:
$\Rightarrow {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\, \to \,{\text{2N}}{{\text{O}}_{\text{2}}}\,{\text{ + }}\,\dfrac{{\text{1}}}{{\text{2}}}{{\text{O}}_{\text{2}}}$
The rate of reaction is written as follows:
Rate of reaction ${\text{ = }}\, \pm \dfrac{{\text{1}}}{{{\text{stoichiometry}}}}\dfrac{{{\text{d}}\left[ {{\text{conc}}{\text{.}}} \right]}}{{{\text{dt}}}}$
The rate of decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}$ is as follows:
Rate of decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}{\text{ = }}\, - \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}}$
$\Rightarrow - \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}} = 2.4 \times {10^{ - 4}}$
The rate of formation of products is as follows:
Rate of formation of ${\text{N}}{{\text{O}}_2}$ $ = + \dfrac{1}{2}\dfrac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_2}} \right]}}{{{\text{dt}}}}$
Rate of formation of ${{\text{O}}_2}$ $ = + 2\dfrac{{{\text{d}}\left[ {{{\text{O}}_2}} \right]}}{{{\text{dt}}}}$
The rate of formation of product is equal to the rate of decomposition of reactant. so we can write,
$\Rightarrow - \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}} = + \dfrac{1}{2}\dfrac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_2}} \right]}}{{{\text{dt}}}}$ and
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = 2 \times \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}}$
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = 2 \times 2.4 \times {10^{ - 4}}$
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = 4.8 \times {10^{ - 4}}$
For rate of formation of oxygen we can write,
$\Rightarrow - \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}} = + 2\dfrac{{{\text{d}}\left[ {{{\text{O}}_2}} \right]}}{{{\text{dt}}}}$ and
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = \dfrac{1}{2} \times \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}}$
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = \dfrac{1}{2} \times 2.4 \times {10^{ - 4}}$
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = 1.2 \times {10^{ - 4}}$
So, the rate of formation of ${\text{N}}{{\text{O}}_{\text{2}}}$ is $4.8 \times {10^{ - 4}}$${\text{mol}}\,\,{{\text{L}}^{ - 1}}{\min ^{ - 1}}$and rate of formation of ${{\text{O}}_{\text{2}}}$ is $1.2 \times {10^{ - 4}}$ ${\text{mol}}\,\,{{\text{L}}^{ - 1}}{\min ^{ - 1}}$.
Therefore option (D) $4.8 \times {10^{ - 4}}$and $1.2 \times {10^{ - 4}}$ respectively, is correct.
Note: Positive sign in the rate of formation of the product indicates the formation of a species or the concentration of that species is increasing and the negative sign in the rate of decomposition indicates the decomposition of a species or the concentration of that species is decreasing.
Formula used: Rate of reaction${\text{ = }}\, \pm \dfrac{{\text{1}}}{{{\text{stoichiometry}}}}\dfrac{{{\text{d}}\left[ {{\text{conc}}{\text{.}}} \right]}}{{{\text{dt}}}}$
Complete step by step answer:
The rate of reaction is defined as the change in concentration of reactant and product with time. The rate of reaction includes the rate of formation of product and rate of decomposition of reactant.
The given reaction is:
$\Rightarrow {{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\, \to \,{\text{2N}}{{\text{O}}_{\text{2}}}\,{\text{ + }}\,\dfrac{{\text{1}}}{{\text{2}}}{{\text{O}}_{\text{2}}}$
The rate of reaction is written as follows:
Rate of reaction ${\text{ = }}\, \pm \dfrac{{\text{1}}}{{{\text{stoichiometry}}}}\dfrac{{{\text{d}}\left[ {{\text{conc}}{\text{.}}} \right]}}{{{\text{dt}}}}$
The rate of decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}$ is as follows:
Rate of decomposition of ${{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}{\text{ = }}\, - \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}}$
$\Rightarrow - \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}} = 2.4 \times {10^{ - 4}}$
The rate of formation of products is as follows:
Rate of formation of ${\text{N}}{{\text{O}}_2}$ $ = + \dfrac{1}{2}\dfrac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_2}} \right]}}{{{\text{dt}}}}$
Rate of formation of ${{\text{O}}_2}$ $ = + 2\dfrac{{{\text{d}}\left[ {{{\text{O}}_2}} \right]}}{{{\text{dt}}}}$
The rate of formation of product is equal to the rate of decomposition of reactant. so we can write,
$\Rightarrow - \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}} = + \dfrac{1}{2}\dfrac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_2}} \right]}}{{{\text{dt}}}}$ and
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = 2 \times \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}}$
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = 2 \times 2.4 \times {10^{ - 4}}$
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{\text{N}}{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = 4.8 \times {10^{ - 4}}$
For rate of formation of oxygen we can write,
$\Rightarrow - \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}} = + 2\dfrac{{{\text{d}}\left[ {{{\text{O}}_2}} \right]}}{{{\text{dt}}}}$ and
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = \dfrac{1}{2} \times \dfrac{{{\text{d}}\left[ {{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}} \right]}}{{{\text{dt}}}}$
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = \dfrac{1}{2} \times 2.4 \times {10^{ - 4}}$
$\Rightarrow + \dfrac{{{\text{d}}\left[ {{{\text{O}}_2}} \right]}}{{{\text{dt}}}} = 1.2 \times {10^{ - 4}}$
So, the rate of formation of ${\text{N}}{{\text{O}}_{\text{2}}}$ is $4.8 \times {10^{ - 4}}$${\text{mol}}\,\,{{\text{L}}^{ - 1}}{\min ^{ - 1}}$and rate of formation of ${{\text{O}}_{\text{2}}}$ is $1.2 \times {10^{ - 4}}$ ${\text{mol}}\,\,{{\text{L}}^{ - 1}}{\min ^{ - 1}}$.
Therefore option (D) $4.8 \times {10^{ - 4}}$and $1.2 \times {10^{ - 4}}$ respectively, is correct.
Note: Positive sign in the rate of formation of the product indicates the formation of a species or the concentration of that species is increasing and the negative sign in the rate of decomposition indicates the decomposition of a species or the concentration of that species is decreasing.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

