
If the pressure of hydrogen gas is increased from $\text{1atm}$to$\text{100atm}$, keeping the hydrogen ion concentration constant at $\text{1M}$, the reduction potential of the hydrogen half-cell is at $\text{2}{{\text{5}}^{\text{o}}}\text{C}$will be:
(A) $\text{0}\text{.059V}$
(B) $\text{-0}\text{.059V}$
(C) $\text{0}\text{.295V}$
(D) $\text{0}\text{.118V}$
Answer
570.3k+ views
Hint:The tendency to lose electrons or to get oxidised is called oxidation potential and similarly, the tendency to gain electrons or to get reduced is called reduction potential.
Complete answer:
In hydrogen half-cell purified ${{\text{H}}_{\text{2}}}$ gas at a constant pressure ($\text{1atm}$) is passed over platinum electrode which remains in the contact with an ideal solution. For ${{\text{H}}_{\text{2}}}$half-cell –
${{\text{H}}^{\text{+}}}\text{+}\,\,{{\text{e}}^{-}}\,\rightleftharpoons \,\,\dfrac{1}{2}{{\text{H}}_{\text{2}}}$
The reduction potential of hydrogen half-cell is calculated by Nernst equation –
$\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{-}\,\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& \\
\end{align}$
Where, $\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{=}\,$is standard reduction potential of hydrogen (which may be defined as the e.m.f of the cell when concentration of each species of the cell reaction is unity). ${{\text{P}}_{{{\text{H}}_{\text{2}}}}}$= pressure and $\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }$is concentration of hydrogen ion.
After putting P=1atm and M=1 in equation (i)
\[\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,0-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{(1)}}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\{\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}=0\} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,0-\text{0}\text{.0591 }\!\!\times\!\!\text{ log1}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ }\!\!\{\!\!\text{ log1=0 }\!\!\}\!\!\text{ } \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{= 0} \\
\end{align}\]
To calculate reduction potential at P=100atm we will use the same equation.
$\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{-}\,\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=0-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ 100 }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{1} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=-\dfrac{\text{0}\text{.0591}}{\text{1}}\log 10 \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,-0.0591\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\{\log 10=1\} \\
\end{align}$
So, the reduction potential of hydrogen half-cell=$\,\text{-0}\text{.0591}\,\text{V}$
So, option (B) will be the correct option.
Note:
Electrode potential of a standard hydrogen electrode is zero volts at$\text{2}{{\text{5}}^{\text{o}}}\text{C}$; the e.m.f of such a cell gives the single electrode potential. \[\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}=0\]
The standard reduction potential of a cell has a positive sign when the half-cell reaction involves reduction and a negative sign when the half-cell goes reduction.
\[\text{E}_{_{\text{cell}}}^{\text{o}}\]Is intensive property, so \[\text{E}_{_{\text{cell}}}^{\text{o}}\]is the same when half-cell equation is multiplied or divided.
The concentration should be 1molar ($\text{(1M)}$should not be 1 molal$\text{(1m)}$.
Complete answer:
In hydrogen half-cell purified ${{\text{H}}_{\text{2}}}$ gas at a constant pressure ($\text{1atm}$) is passed over platinum electrode which remains in the contact with an ideal solution. For ${{\text{H}}_{\text{2}}}$half-cell –
${{\text{H}}^{\text{+}}}\text{+}\,\,{{\text{e}}^{-}}\,\rightleftharpoons \,\,\dfrac{1}{2}{{\text{H}}_{\text{2}}}$
The reduction potential of hydrogen half-cell is calculated by Nernst equation –
$\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{-}\,\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& \\
\end{align}$
Where, $\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{=}\,$is standard reduction potential of hydrogen (which may be defined as the e.m.f of the cell when concentration of each species of the cell reaction is unity). ${{\text{P}}_{{{\text{H}}_{\text{2}}}}}$= pressure and $\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }$is concentration of hydrogen ion.
After putting P=1atm and M=1 in equation (i)
\[\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,0-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{(1)}}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\{\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}=0\} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,0-\text{0}\text{.0591 }\!\!\times\!\!\text{ log1}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ }\!\!\{\!\!\text{ log1=0 }\!\!\}\!\!\text{ } \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{= 0} \\
\end{align}\]
To calculate reduction potential at P=100atm we will use the same equation.
$\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{-}\,\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=0-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ 100 }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{1} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=-\dfrac{\text{0}\text{.0591}}{\text{1}}\log 10 \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,-0.0591\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\{\log 10=1\} \\
\end{align}$
So, the reduction potential of hydrogen half-cell=$\,\text{-0}\text{.0591}\,\text{V}$
So, option (B) will be the correct option.
Note:
Electrode potential of a standard hydrogen electrode is zero volts at$\text{2}{{\text{5}}^{\text{o}}}\text{C}$; the e.m.f of such a cell gives the single electrode potential. \[\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}=0\]
The standard reduction potential of a cell has a positive sign when the half-cell reaction involves reduction and a negative sign when the half-cell goes reduction.
\[\text{E}_{_{\text{cell}}}^{\text{o}}\]Is intensive property, so \[\text{E}_{_{\text{cell}}}^{\text{o}}\]is the same when half-cell equation is multiplied or divided.
The concentration should be 1molar ($\text{(1M)}$should not be 1 molal$\text{(1m)}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

