
If the pressure of hydrogen gas is increased from $\text{1atm}$to$\text{100atm}$, keeping the hydrogen ion concentration constant at $\text{1M}$, the reduction potential of the hydrogen half-cell is at $\text{2}{{\text{5}}^{\text{o}}}\text{C}$will be:
(A) $\text{0}\text{.059V}$
(B) $\text{-0}\text{.059V}$
(C) $\text{0}\text{.295V}$
(D) $\text{0}\text{.118V}$
Answer
569.7k+ views
Hint:The tendency to lose electrons or to get oxidised is called oxidation potential and similarly, the tendency to gain electrons or to get reduced is called reduction potential.
Complete answer:
In hydrogen half-cell purified ${{\text{H}}_{\text{2}}}$ gas at a constant pressure ($\text{1atm}$) is passed over platinum electrode which remains in the contact with an ideal solution. For ${{\text{H}}_{\text{2}}}$half-cell –
${{\text{H}}^{\text{+}}}\text{+}\,\,{{\text{e}}^{-}}\,\rightleftharpoons \,\,\dfrac{1}{2}{{\text{H}}_{\text{2}}}$
The reduction potential of hydrogen half-cell is calculated by Nernst equation –
$\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{-}\,\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& \\
\end{align}$
Where, $\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{=}\,$is standard reduction potential of hydrogen (which may be defined as the e.m.f of the cell when concentration of each species of the cell reaction is unity). ${{\text{P}}_{{{\text{H}}_{\text{2}}}}}$= pressure and $\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }$is concentration of hydrogen ion.
After putting P=1atm and M=1 in equation (i)
\[\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,0-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{(1)}}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\{\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}=0\} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,0-\text{0}\text{.0591 }\!\!\times\!\!\text{ log1}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ }\!\!\{\!\!\text{ log1=0 }\!\!\}\!\!\text{ } \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{= 0} \\
\end{align}\]
To calculate reduction potential at P=100atm we will use the same equation.
$\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{-}\,\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=0-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ 100 }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{1} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=-\dfrac{\text{0}\text{.0591}}{\text{1}}\log 10 \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,-0.0591\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\{\log 10=1\} \\
\end{align}$
So, the reduction potential of hydrogen half-cell=$\,\text{-0}\text{.0591}\,\text{V}$
So, option (B) will be the correct option.
Note:
Electrode potential of a standard hydrogen electrode is zero volts at$\text{2}{{\text{5}}^{\text{o}}}\text{C}$; the e.m.f of such a cell gives the single electrode potential. \[\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}=0\]
The standard reduction potential of a cell has a positive sign when the half-cell reaction involves reduction and a negative sign when the half-cell goes reduction.
\[\text{E}_{_{\text{cell}}}^{\text{o}}\]Is intensive property, so \[\text{E}_{_{\text{cell}}}^{\text{o}}\]is the same when half-cell equation is multiplied or divided.
The concentration should be 1molar ($\text{(1M)}$should not be 1 molal$\text{(1m)}$.
Complete answer:
In hydrogen half-cell purified ${{\text{H}}_{\text{2}}}$ gas at a constant pressure ($\text{1atm}$) is passed over platinum electrode which remains in the contact with an ideal solution. For ${{\text{H}}_{\text{2}}}$half-cell –
${{\text{H}}^{\text{+}}}\text{+}\,\,{{\text{e}}^{-}}\,\rightleftharpoons \,\,\dfrac{1}{2}{{\text{H}}_{\text{2}}}$
The reduction potential of hydrogen half-cell is calculated by Nernst equation –
$\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{-}\,\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& \\
\end{align}$
Where, $\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{=}\,$is standard reduction potential of hydrogen (which may be defined as the e.m.f of the cell when concentration of each species of the cell reaction is unity). ${{\text{P}}_{{{\text{H}}_{\text{2}}}}}$= pressure and $\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }$is concentration of hydrogen ion.
After putting P=1atm and M=1 in equation (i)
\[\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,0-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{(1)}}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\{\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}=0\} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,0-\text{0}\text{.0591 }\!\!\times\!\!\text{ log1}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ }\!\!\{\!\!\text{ log1=0 }\!\!\}\!\!\text{ } \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{= 0} \\
\end{align}\]
To calculate reduction potential at P=100atm we will use the same equation.
$\begin{align}
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}\text{=}\,\,\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}\text{-}\,\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ }{{\text{P}}_{{{\text{H}}_{\text{2}}}}}\text{ }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{\text{ }\!\![\!\!\text{ }{{\text{H}}^{\text{+}}}\text{ }\!\!]\!\!\text{ }}...........\text{(i)} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=0-\dfrac{\text{0}\text{.0591}}{\text{1}}\,\text{log}\dfrac{{{\text{ }\!\![\!\!\text{ 100 }\!\!]\!\!\text{ }}^{{\scriptstyle{}^{\text{1}}/{}_{\text{2}}}}}}{1} \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=-\dfrac{\text{0}\text{.0591}}{\text{1}}\log 10 \\
& {{\text{E}}_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}=\,\,-0.0591\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\{\log 10=1\} \\
\end{align}$
So, the reduction potential of hydrogen half-cell=$\,\text{-0}\text{.0591}\,\text{V}$
So, option (B) will be the correct option.
Note:
Electrode potential of a standard hydrogen electrode is zero volts at$\text{2}{{\text{5}}^{\text{o}}}\text{C}$; the e.m.f of such a cell gives the single electrode potential. \[\text{E}_{_{{\scriptstyle{}^{{{\text{H}}^{\text{+}}}}/{}_{{{\text{H}}_{\text{2}}}}}}}^{\text{o}}=0\]
The standard reduction potential of a cell has a positive sign when the half-cell reaction involves reduction and a negative sign when the half-cell goes reduction.
\[\text{E}_{_{\text{cell}}}^{\text{o}}\]Is intensive property, so \[\text{E}_{_{\text{cell}}}^{\text{o}}\]is the same when half-cell equation is multiplied or divided.
The concentration should be 1molar ($\text{(1M)}$should not be 1 molal$\text{(1m)}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

