
If the points $\left( 1,1,p \right)$ and \[\left( -3,0,1 \right)\] be equidistant from the plane $\overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)+13=0$, then find the value of p.
Answer
575.7k+ views
Hint: We find the distance of the points $\left( 1,1,p \right)$ and \[\left( -3,0,1 \right)\] from the plane $\overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)+13=0$. Using the formula of distance \[\left| \dfrac{\overrightarrow{a}.\overrightarrow{n}-d}{\left| \overrightarrow{n} \right|} \right|\], we get the distance based on the variable and plane form according to $\overrightarrow{r}.\overrightarrow{n}=d$. We equal both parts to find a linear equation. We solve that to find possible values of p.
Complete step-by-step solution:
The distance of a point with position vector $\overrightarrow{a}$ from the plane $\overrightarrow{r}.\overrightarrow{n}=d$ is \[\left| \dfrac{\overrightarrow{a}.\overrightarrow{n}-d}{\left| \overrightarrow{n} \right|} \right|\].
The points $\left( 1,1,p \right)$ and \[\left( -3,0,1 \right)\] be equidistant from the plane $\overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)+13=0$.
We convert the points $\left( 1,1,p \right)$ and \[\left( -3,0,1 \right)\] into their vector form.
$\overrightarrow{{{a}_{1}}}=\widehat{i}+\widehat{j}+p\widehat{k}$, $\overrightarrow{{{a}_{2}}}=-3\widehat{i}+\widehat{k}$.
The dot product value of vectors is either 1 or 0. For same coordinate products like $\widehat{i}.\widehat{i}=\widehat{j}.\widehat{j}=\widehat{k}.\widehat{k}=1$ and for any other cases we have $\widehat{i}.\widehat{j}=\widehat{j}.\widehat{i}=\widehat{j}.\widehat{k}=\widehat{k}.\widehat{j}=\widehat{i}.\widehat{k}=\widehat{k}.\widehat{i}=0$.
Now the plane is
$\begin{align}
& \overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)+13=0 \\
& \Rightarrow \overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)=-13 \\
& \Rightarrow \overrightarrow{r}.\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)=13 \\
\end{align}$
Comparing $\overrightarrow{r}.\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)=13$ with $\overrightarrow{r}.\overrightarrow{n}=d$, we get $\overrightarrow{n}=\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right),d=13$.
We find modulus of $\overrightarrow{n}=\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)$. \[\left| \overrightarrow{n} \right|=\left| -3\widehat{i}-4\widehat{j}+12\widehat{k} \right|=\sqrt{{{3}^{2}}+{{4}^{2}}+{{12}^{2}}}=13\].
Now we find distance of points $\overrightarrow{{{a}_{1}}}=\widehat{i}+\widehat{j}+p\widehat{k}$, $\overrightarrow{{{a}_{2}}}=-3\widehat{i}+\widehat{k}$ from the plane.
From the point $\overrightarrow{{{a}_{1}}}=\widehat{i}+\widehat{j}+p\widehat{k}$, the distance is \[\left| \dfrac{\overrightarrow{{{a}_{1}}}.\overrightarrow{n}-d}{\left| \overrightarrow{n} \right|} \right|\]. We now find the value as
\[\begin{align}
& \left| \dfrac{\overrightarrow{{{a}_{1}}}.\overrightarrow{n}-d}{\left| \overrightarrow{n} \right|} \right| \\
& =\left| \dfrac{\left( \widehat{i}+\widehat{j}+p\widehat{k} \right).\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)-13}{13} \right| \\
\end{align}\]
Here, we apply the dot product formulas to get
\[\begin{align}
& \left| \dfrac{\left( \widehat{i}+\widehat{j}+p\widehat{k} \right).\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)-13}{13} \right| \\
& =\left| \dfrac{-3-4+12p-13}{13} \right| \\
& =\left| \dfrac{12p-20}{13} \right| \\
\end{align}\]
From the point $\overrightarrow{{{a}_{2}}}=-3\widehat{i}+\widehat{k}$, the distance is \[\left| \dfrac{\overrightarrow{{{a}_{2}}}.\overrightarrow{n}-d}{\left| \overrightarrow{n} \right|} \right|\]. We now find the value as
\[\begin{align}
& \left| \dfrac{\overrightarrow{{{a}_{2}}}.\overrightarrow{n}-d}{\left| \overrightarrow{n} \right|} \right| \\
& =\left| \dfrac{\left( -3\widehat{i}+\widehat{k} \right).\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)-13}{13} \right| \\
\end{align}\].
Here, we apply the dot product formulas to get
\[\begin{align}
& \left| \dfrac{\left( -3\widehat{i}+\widehat{k} \right).\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)-13}{13} \right| \\
& =\left| \dfrac{9+12-13}{13} \right| \\
& =\dfrac{8}{13} \\
\end{align}\]
It’s given the points $\left( 1,1,p \right)$ and \[\left( -3,0,1 \right)\] be equidistant from the plane $\overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)+13=0$
So, \[\left| \dfrac{12p-20}{13} \right|=\dfrac{8}{13}\].
We solve the equation for p.
\[\begin{align}
& \left| \dfrac{12p-20}{13} \right|=\dfrac{8}{13} \\
& \Rightarrow \dfrac{12p-20}{13}=\pm \dfrac{8}{13} \\
& \Rightarrow 12p-20=\pm 8 \\
& \Rightarrow 12p=20\pm 8=28,12 \\
& \Rightarrow p=\dfrac{7}{3},1 \\
\end{align}\]
Therefore, the value so p is \[p=\dfrac{7}{3},1\].
Note: The plane needs to be changed into its normal form to equate with $\overrightarrow{r}.\overrightarrow{n}=d$. The modulus form needs to be kept as it is. That’s why we will get two possible values. We equated the plane formula of $\overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)+13=0$ with accordance to the form $\overrightarrow{r}.\overrightarrow{n}=d$ where d defines the distance of the plane from the origin. We need to keep it positive always.
Complete step-by-step solution:
The distance of a point with position vector $\overrightarrow{a}$ from the plane $\overrightarrow{r}.\overrightarrow{n}=d$ is \[\left| \dfrac{\overrightarrow{a}.\overrightarrow{n}-d}{\left| \overrightarrow{n} \right|} \right|\].
The points $\left( 1,1,p \right)$ and \[\left( -3,0,1 \right)\] be equidistant from the plane $\overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)+13=0$.
We convert the points $\left( 1,1,p \right)$ and \[\left( -3,0,1 \right)\] into their vector form.
$\overrightarrow{{{a}_{1}}}=\widehat{i}+\widehat{j}+p\widehat{k}$, $\overrightarrow{{{a}_{2}}}=-3\widehat{i}+\widehat{k}$.
The dot product value of vectors is either 1 or 0. For same coordinate products like $\widehat{i}.\widehat{i}=\widehat{j}.\widehat{j}=\widehat{k}.\widehat{k}=1$ and for any other cases we have $\widehat{i}.\widehat{j}=\widehat{j}.\widehat{i}=\widehat{j}.\widehat{k}=\widehat{k}.\widehat{j}=\widehat{i}.\widehat{k}=\widehat{k}.\widehat{i}=0$.
Now the plane is
$\begin{align}
& \overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)+13=0 \\
& \Rightarrow \overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)=-13 \\
& \Rightarrow \overrightarrow{r}.\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)=13 \\
\end{align}$
Comparing $\overrightarrow{r}.\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)=13$ with $\overrightarrow{r}.\overrightarrow{n}=d$, we get $\overrightarrow{n}=\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right),d=13$.
We find modulus of $\overrightarrow{n}=\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)$. \[\left| \overrightarrow{n} \right|=\left| -3\widehat{i}-4\widehat{j}+12\widehat{k} \right|=\sqrt{{{3}^{2}}+{{4}^{2}}+{{12}^{2}}}=13\].
Now we find distance of points $\overrightarrow{{{a}_{1}}}=\widehat{i}+\widehat{j}+p\widehat{k}$, $\overrightarrow{{{a}_{2}}}=-3\widehat{i}+\widehat{k}$ from the plane.
From the point $\overrightarrow{{{a}_{1}}}=\widehat{i}+\widehat{j}+p\widehat{k}$, the distance is \[\left| \dfrac{\overrightarrow{{{a}_{1}}}.\overrightarrow{n}-d}{\left| \overrightarrow{n} \right|} \right|\]. We now find the value as
\[\begin{align}
& \left| \dfrac{\overrightarrow{{{a}_{1}}}.\overrightarrow{n}-d}{\left| \overrightarrow{n} \right|} \right| \\
& =\left| \dfrac{\left( \widehat{i}+\widehat{j}+p\widehat{k} \right).\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)-13}{13} \right| \\
\end{align}\]
Here, we apply the dot product formulas to get
\[\begin{align}
& \left| \dfrac{\left( \widehat{i}+\widehat{j}+p\widehat{k} \right).\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)-13}{13} \right| \\
& =\left| \dfrac{-3-4+12p-13}{13} \right| \\
& =\left| \dfrac{12p-20}{13} \right| \\
\end{align}\]
From the point $\overrightarrow{{{a}_{2}}}=-3\widehat{i}+\widehat{k}$, the distance is \[\left| \dfrac{\overrightarrow{{{a}_{2}}}.\overrightarrow{n}-d}{\left| \overrightarrow{n} \right|} \right|\]. We now find the value as
\[\begin{align}
& \left| \dfrac{\overrightarrow{{{a}_{2}}}.\overrightarrow{n}-d}{\left| \overrightarrow{n} \right|} \right| \\
& =\left| \dfrac{\left( -3\widehat{i}+\widehat{k} \right).\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)-13}{13} \right| \\
\end{align}\].
Here, we apply the dot product formulas to get
\[\begin{align}
& \left| \dfrac{\left( -3\widehat{i}+\widehat{k} \right).\left( -3\widehat{i}-4\widehat{j}+12\widehat{k} \right)-13}{13} \right| \\
& =\left| \dfrac{9+12-13}{13} \right| \\
& =\dfrac{8}{13} \\
\end{align}\]
It’s given the points $\left( 1,1,p \right)$ and \[\left( -3,0,1 \right)\] be equidistant from the plane $\overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)+13=0$
So, \[\left| \dfrac{12p-20}{13} \right|=\dfrac{8}{13}\].
We solve the equation for p.
\[\begin{align}
& \left| \dfrac{12p-20}{13} \right|=\dfrac{8}{13} \\
& \Rightarrow \dfrac{12p-20}{13}=\pm \dfrac{8}{13} \\
& \Rightarrow 12p-20=\pm 8 \\
& \Rightarrow 12p=20\pm 8=28,12 \\
& \Rightarrow p=\dfrac{7}{3},1 \\
\end{align}\]
Therefore, the value so p is \[p=\dfrac{7}{3},1\].
Note: The plane needs to be changed into its normal form to equate with $\overrightarrow{r}.\overrightarrow{n}=d$. The modulus form needs to be kept as it is. That’s why we will get two possible values. We equated the plane formula of $\overrightarrow{r}.\left( 3\widehat{i}+4\widehat{j}-12\widehat{k} \right)+13=0$ with accordance to the form $\overrightarrow{r}.\overrightarrow{n}=d$ where d defines the distance of the plane from the origin. We need to keep it positive always.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

