
If the matrices A, B and C are given as \[A=\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right]\], \[B=\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right]\] and \[C=\left[ \begin{matrix}
2 \\
-1 \\
-3 \\
\end{matrix}\text{ }\begin{matrix}
4 \\
-4 \\
6 \\
\end{matrix} \right]\]. Find the matrix X such that \[3A-4B+5X=C\].
Answer
590.1k+ views
Hint: We start solving this problem by first finding the values of 3A, 4B by multiplying the matrices A and B with 3 and 4. Then we substitute the values of 3A, 4B and C in the given condition \[3A-4B+5X=C\] and solve it to find the value of 5X. then we divide the obtained value with 5 to find the matrix X.
Complete step by step answer:
We are given that matrix \[A=\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right]\], matrix \[B=\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right]\] and matrix \[C=\left[ \begin{matrix}
2 \\
-1 \\
-3 \\
\end{matrix}\text{ }\begin{matrix}
4 \\
-4 \\
6 \\
\end{matrix} \right]\].
We are given that \[3A-4B+5X=C\]. We can write it as
\[\begin{align}
& \Rightarrow 3A-4B+5X=C \\
& \Rightarrow 5X=C-3A+4B \\
\end{align}\]
Now, let us consider the matrix 3A.
As, \[A=\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right]\], multiplying it with 3 we get,
\[\begin{align}
& \Rightarrow 3A=3\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow 3A=\left[ \begin{matrix}
3 \\
9 \\
-18 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-15 \\
0 \\
\end{matrix} \right].................\left( 1 \right) \\
\end{align}\]
As, \[B=\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right]\], multiplying it with 4 we get,
\[\begin{align}
& \Rightarrow 4B=4\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right] \\
& \Rightarrow 4B=\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right].................\left( 2 \right) \\
\end{align}\]
Now let us substitute the obtained values in \[5X=C-3A+4B\]. Then we get,
$\begin{align}
& \Rightarrow 5X=\left[ \begin{matrix}
2 \\
-1 \\
-3 \\
\end{matrix}\text{ }\begin{matrix}
4 \\
-4 \\
6 \\
\end{matrix} \right]-\left[ \begin{matrix}
3 \\
9 \\
-18 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-15 \\
0 \\
\end{matrix} \right]+\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right] \\
& \Rightarrow 5X=\left[ \begin{matrix}
-1 \\
-10 \\
-21 \\
\end{matrix}\text{ }\begin{matrix}
10 \\
11 \\
6 \\
\end{matrix} \right]+\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right] \\
& \Rightarrow 5X=\left[ \begin{matrix}
-5 \\
6 \\
-17 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
19 \\
26 \\
\end{matrix} \right] \\
\end{align}$
Now, dividing it with 5 we can find the value of matrix X.
$\Rightarrow X=\dfrac{1}{5}\left[ \begin{matrix}
-5 \\
6 \\
-17 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
19 \\
26 \\
\end{matrix} \right]$
Now, let us take the 5, that is outside the matrix in the above value of X, inside the matrix. Then we get,
$\begin{align}
& \Rightarrow X=\left[ \begin{matrix}
\dfrac{-5}{5} \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right] \\
& \\
& \Rightarrow X=\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right] \\
\end{align}$
So, we get the value of matrix X as $\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right]$.
Hence answer is $\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right]$.
Note: The common mistake one does while solving this problem is when multiplying a matrix with a number one might multiply only the first element in the matrix. For example, when finding the value of 3A, one might make a mistake while multiplying 3 with A as,
\[\begin{align}
& \Rightarrow 3A=3\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow 3A=\left[ \begin{matrix}
3 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
\end{align}\]
But it is wrong. When a matrix is multiplied by a number, we need to multiply all the elements in the given matrix not only the first one.
Complete step by step answer:
We are given that matrix \[A=\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right]\], matrix \[B=\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right]\] and matrix \[C=\left[ \begin{matrix}
2 \\
-1 \\
-3 \\
\end{matrix}\text{ }\begin{matrix}
4 \\
-4 \\
6 \\
\end{matrix} \right]\].
We are given that \[3A-4B+5X=C\]. We can write it as
\[\begin{align}
& \Rightarrow 3A-4B+5X=C \\
& \Rightarrow 5X=C-3A+4B \\
\end{align}\]
Now, let us consider the matrix 3A.
As, \[A=\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right]\], multiplying it with 3 we get,
\[\begin{align}
& \Rightarrow 3A=3\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow 3A=\left[ \begin{matrix}
3 \\
9 \\
-18 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-15 \\
0 \\
\end{matrix} \right].................\left( 1 \right) \\
\end{align}\]
As, \[B=\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right]\], multiplying it with 4 we get,
\[\begin{align}
& \Rightarrow 4B=4\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right] \\
& \Rightarrow 4B=\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right].................\left( 2 \right) \\
\end{align}\]
Now let us substitute the obtained values in \[5X=C-3A+4B\]. Then we get,
$\begin{align}
& \Rightarrow 5X=\left[ \begin{matrix}
2 \\
-1 \\
-3 \\
\end{matrix}\text{ }\begin{matrix}
4 \\
-4 \\
6 \\
\end{matrix} \right]-\left[ \begin{matrix}
3 \\
9 \\
-18 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-15 \\
0 \\
\end{matrix} \right]+\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right] \\
& \Rightarrow 5X=\left[ \begin{matrix}
-1 \\
-10 \\
-21 \\
\end{matrix}\text{ }\begin{matrix}
10 \\
11 \\
6 \\
\end{matrix} \right]+\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right] \\
& \Rightarrow 5X=\left[ \begin{matrix}
-5 \\
6 \\
-17 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
19 \\
26 \\
\end{matrix} \right] \\
\end{align}$
Now, dividing it with 5 we can find the value of matrix X.
$\Rightarrow X=\dfrac{1}{5}\left[ \begin{matrix}
-5 \\
6 \\
-17 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
19 \\
26 \\
\end{matrix} \right]$
Now, let us take the 5, that is outside the matrix in the above value of X, inside the matrix. Then we get,
$\begin{align}
& \Rightarrow X=\left[ \begin{matrix}
\dfrac{-5}{5} \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right] \\
& \\
& \Rightarrow X=\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right] \\
\end{align}$
So, we get the value of matrix X as $\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right]$.
Hence answer is $\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right]$.
Note: The common mistake one does while solving this problem is when multiplying a matrix with a number one might multiply only the first element in the matrix. For example, when finding the value of 3A, one might make a mistake while multiplying 3 with A as,
\[\begin{align}
& \Rightarrow 3A=3\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow 3A=\left[ \begin{matrix}
3 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
\end{align}\]
But it is wrong. When a matrix is multiplied by a number, we need to multiply all the elements in the given matrix not only the first one.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

