
If the matrices A, B and C are given as \[A=\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right]\], \[B=\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right]\] and \[C=\left[ \begin{matrix}
2 \\
-1 \\
-3 \\
\end{matrix}\text{ }\begin{matrix}
4 \\
-4 \\
6 \\
\end{matrix} \right]\]. Find the matrix X such that \[3A-4B+5X=C\].
Answer
509.7k+ views
Hint: We start solving this problem by first finding the values of 3A, 4B by multiplying the matrices A and B with 3 and 4. Then we substitute the values of 3A, 4B and C in the given condition \[3A-4B+5X=C\] and solve it to find the value of 5X. then we divide the obtained value with 5 to find the matrix X.
Complete step by step answer:
We are given that matrix \[A=\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right]\], matrix \[B=\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right]\] and matrix \[C=\left[ \begin{matrix}
2 \\
-1 \\
-3 \\
\end{matrix}\text{ }\begin{matrix}
4 \\
-4 \\
6 \\
\end{matrix} \right]\].
We are given that \[3A-4B+5X=C\]. We can write it as
\[\begin{align}
& \Rightarrow 3A-4B+5X=C \\
& \Rightarrow 5X=C-3A+4B \\
\end{align}\]
Now, let us consider the matrix 3A.
As, \[A=\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right]\], multiplying it with 3 we get,
\[\begin{align}
& \Rightarrow 3A=3\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow 3A=\left[ \begin{matrix}
3 \\
9 \\
-18 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-15 \\
0 \\
\end{matrix} \right].................\left( 1 \right) \\
\end{align}\]
As, \[B=\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right]\], multiplying it with 4 we get,
\[\begin{align}
& \Rightarrow 4B=4\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right] \\
& \Rightarrow 4B=\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right].................\left( 2 \right) \\
\end{align}\]
Now let us substitute the obtained values in \[5X=C-3A+4B\]. Then we get,
$\begin{align}
& \Rightarrow 5X=\left[ \begin{matrix}
2 \\
-1 \\
-3 \\
\end{matrix}\text{ }\begin{matrix}
4 \\
-4 \\
6 \\
\end{matrix} \right]-\left[ \begin{matrix}
3 \\
9 \\
-18 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-15 \\
0 \\
\end{matrix} \right]+\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right] \\
& \Rightarrow 5X=\left[ \begin{matrix}
-1 \\
-10 \\
-21 \\
\end{matrix}\text{ }\begin{matrix}
10 \\
11 \\
6 \\
\end{matrix} \right]+\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right] \\
& \Rightarrow 5X=\left[ \begin{matrix}
-5 \\
6 \\
-17 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
19 \\
26 \\
\end{matrix} \right] \\
\end{align}$
Now, dividing it with 5 we can find the value of matrix X.
$\Rightarrow X=\dfrac{1}{5}\left[ \begin{matrix}
-5 \\
6 \\
-17 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
19 \\
26 \\
\end{matrix} \right]$
Now, let us take the 5, that is outside the matrix in the above value of X, inside the matrix. Then we get,
$\begin{align}
& \Rightarrow X=\left[ \begin{matrix}
\dfrac{-5}{5} \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right] \\
& \\
& \Rightarrow X=\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right] \\
\end{align}$
So, we get the value of matrix X as $\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right]$.
Hence answer is $\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right]$.
Note: The common mistake one does while solving this problem is when multiplying a matrix with a number one might multiply only the first element in the matrix. For example, when finding the value of 3A, one might make a mistake while multiplying 3 with A as,
\[\begin{align}
& \Rightarrow 3A=3\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow 3A=\left[ \begin{matrix}
3 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
\end{align}\]
But it is wrong. When a matrix is multiplied by a number, we need to multiply all the elements in the given matrix not only the first one.
Complete step by step answer:
We are given that matrix \[A=\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right]\], matrix \[B=\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right]\] and matrix \[C=\left[ \begin{matrix}
2 \\
-1 \\
-3 \\
\end{matrix}\text{ }\begin{matrix}
4 \\
-4 \\
6 \\
\end{matrix} \right]\].
We are given that \[3A-4B+5X=C\]. We can write it as
\[\begin{align}
& \Rightarrow 3A-4B+5X=C \\
& \Rightarrow 5X=C-3A+4B \\
\end{align}\]
Now, let us consider the matrix 3A.
As, \[A=\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right]\], multiplying it with 3 we get,
\[\begin{align}
& \Rightarrow 3A=3\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow 3A=\left[ \begin{matrix}
3 \\
9 \\
-18 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-15 \\
0 \\
\end{matrix} \right].................\left( 1 \right) \\
\end{align}\]
As, \[B=\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right]\], multiplying it with 4 we get,
\[\begin{align}
& \Rightarrow 4B=4\left[ \begin{matrix}
-1 \\
4 \\
1 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
2 \\
5 \\
\end{matrix} \right] \\
& \Rightarrow 4B=\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right].................\left( 2 \right) \\
\end{align}\]
Now let us substitute the obtained values in \[5X=C-3A+4B\]. Then we get,
$\begin{align}
& \Rightarrow 5X=\left[ \begin{matrix}
2 \\
-1 \\
-3 \\
\end{matrix}\text{ }\begin{matrix}
4 \\
-4 \\
6 \\
\end{matrix} \right]-\left[ \begin{matrix}
3 \\
9 \\
-18 \\
\end{matrix}\text{ }\begin{matrix}
-6 \\
-15 \\
0 \\
\end{matrix} \right]+\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right] \\
& \Rightarrow 5X=\left[ \begin{matrix}
-1 \\
-10 \\
-21 \\
\end{matrix}\text{ }\begin{matrix}
10 \\
11 \\
6 \\
\end{matrix} \right]+\left[ \begin{matrix}
-4 \\
16 \\
4 \\
\end{matrix}\text{ }\begin{matrix}
-8 \\
8 \\
20 \\
\end{matrix} \right] \\
& \Rightarrow 5X=\left[ \begin{matrix}
-5 \\
6 \\
-17 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
19 \\
26 \\
\end{matrix} \right] \\
\end{align}$
Now, dividing it with 5 we can find the value of matrix X.
$\Rightarrow X=\dfrac{1}{5}\left[ \begin{matrix}
-5 \\
6 \\
-17 \\
\end{matrix}\text{ }\begin{matrix}
2 \\
19 \\
26 \\
\end{matrix} \right]$
Now, let us take the 5, that is outside the matrix in the above value of X, inside the matrix. Then we get,
$\begin{align}
& \Rightarrow X=\left[ \begin{matrix}
\dfrac{-5}{5} \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right] \\
& \\
& \Rightarrow X=\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right] \\
\end{align}$
So, we get the value of matrix X as $\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right]$.
Hence answer is $\left[ \begin{matrix}
-1 \\
\dfrac{6}{5} \\
\dfrac{-17}{5} \\
\end{matrix}\text{ }\begin{matrix}
\dfrac{2}{5} \\
\dfrac{19}{5} \\
\dfrac{26}{5} \\
\end{matrix} \right]$.
Note: The common mistake one does while solving this problem is when multiplying a matrix with a number one might multiply only the first element in the matrix. For example, when finding the value of 3A, one might make a mistake while multiplying 3 with A as,
\[\begin{align}
& \Rightarrow 3A=3\left[ \begin{matrix}
1 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
& \Rightarrow 3A=\left[ \begin{matrix}
3 \\
3 \\
-6 \\
\end{matrix}\text{ }\begin{matrix}
-2 \\
-5 \\
0 \\
\end{matrix} \right] \\
\end{align}\]
But it is wrong. When a matrix is multiplied by a number, we need to multiply all the elements in the given matrix not only the first one.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE
