
If the mass of the electron is $9.11\, \times {10^{ - 31}}$ kg. Plank's constant is $6.626 \times \,{10^{ - 34}}$ J-s and uncertainty in position is ${\text{0}}{\text{.1}}\,{{\text{A}}^{\text{o}}}$, then uncertainty in velocity is?
A.$5.79\,\, \times {10^8}\,{\text{m/s}}$
B. $5.79\,\, \times {10^5}\,{\text{m/s}}$
C.$5.79\,\, \times {10^6}\,{\text{m/s}}$
D. $5.79\,\, \times {10^7}\,{\text{m/s}}$
Answer
496.5k+ views
Hint:We should know the Heisenberg uncertainty principle to answer this question. The Heisenberg uncertainty principle relates the uncertainty in velocity, and position with the mass of the particle, and Plank’s constant. First we will convert the units of Planck's constant and uncertainty in position then by substituting all values in the Heisenberg uncertainty formula we can determine the uncertainty in velocity.
Complete solution:
The Heisenberg uncertainty formula is given as follows:
${\delta x}{\Delta v = }\,\dfrac{{\text{h}}}{{{\text{4\pi m}}}}$
${\delta x}$ is the uncertainty in the position of the particle.
h is the Plank’s constant.
m is the mass of the particle.
${\delta v}$ is the uncertainty in the velocity of the particle.
First, we will convert the unit of x from ${{\text{A}}^{\text{o}}}$ to meter as follows:
${\text{1}}\,{{\text{A}}^{\text{o}}}$= ${10^{ - 10}}\,{\text{m}}$
${\text{0}}{\text{.1}}\,{{\text{A}}^{\text{o}}}$= ${10^{ - 11}}\,{\text{m}}$
Now, we will convert the unit of h from J to ${\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - {\text{2}}}}$ as follows:
$1$ J = ${\text{1}}\,{\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - {\text{2}}}}$
$6.626 \times \,{10^{ - 34}}$ Js = $6.626 \times \,{10^{ - 34}}\,{\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - 1}}$
On substituting $9.1\, \times {10^{ - 31}}$ kg for mass of electron, ${10^{ - 11}}$ m for uncertainty in position, and $6.626 \times \,{10^{ - 34}}\,{\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - 1}}$for h,
${\delta x}{.\Delta v = }\,\dfrac{{\text{h}}}{{{\text{4\pi m}}}}$
${\text{1}}{{\text{0}}^{ - 11}}\,{\text{m}}\, \times \,\,{\delta v = }\,\dfrac{{6.626 \times \,{{10}^{ - 34}}\,{\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - 1}}}}{{{\text{4}} \times 3.14 \times 9.11\, \times {{10}^{ - 31}}\,{\text{kg}}}}$
$\,\,{\delta v = }\,\dfrac{{6.626 \times \,{{10}^{ - 34}}\,{\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - 1}}}}{{{\text{1}}{{\text{0}}^{ - 11}}\,{\text{m}}\, \times \,{\text{4}} \times 3.14 \times 9.11\, \times {{10}^{ - 31}}\,{\text{kg}}}}$
$\,{\delta v = }\,\dfrac{{6.626 \times \,{{10}^{ - 34}}\,{\text{m}}{{\text{s}}^{ - 1}}}}{{1.144\, \times {{10}^{ - 40}}\,}}$
$\,{\delta v = }\,\dfrac{{6.626 \times \,{{10}^{ - 34}}\,{\text{m}}{{\text{s}}^{ - 1}}}}{{14.42\, \times {{10}^{ - 42}}\,}}$
$\,{\delta v = }\,5.79 \times \,{10^6}\,{\text{m}}{{\text{s}}^{ - 1}}$
So, the uncertainty in velocity is $5.79 \times \,{10^6}\,{\text{m}}{{\text{s}}^{ - 1}}$.
Therefore, option (C) $5.79 \times \,{10^6}\,{\text{m}}{{\text{s}}^{ - 1}}$ is correct.
Note: According to the Heisenberg uncertainty principle it is impossible to simultaneously measurement of uncertainty of position and momentum. Here, uncertainty of velocity is very high $5.79 \times \,{10^6}\,{\text{m}}{{\text{s}}^{ - 1}}$ whereas the uncertainty in position is very small ${\text{1}}{{\text{0}}^{ - 11}}\,{\text{m}}$ so, we can determine the position of this particle but cannot determine the velocity precisely. Unit conversion is important. On joule is equal to 1 Kg. meter square/ seconds square.
The product of mass of the particle and velocity is known as momentum. So, we can substitute p for v/m. We can use the Heisenberg uncertainty formula to determine the momentum of the particle also.
${\delta x}{.\Delta p = }\,\dfrac{{\text{h}}}{{{\text{4\pi }}}}$ ; Where, ${\text{p}}$is the momentum.
Complete solution:
The Heisenberg uncertainty formula is given as follows:
${\delta x}{\Delta v = }\,\dfrac{{\text{h}}}{{{\text{4\pi m}}}}$
${\delta x}$ is the uncertainty in the position of the particle.
h is the Plank’s constant.
m is the mass of the particle.
${\delta v}$ is the uncertainty in the velocity of the particle.
First, we will convert the unit of x from ${{\text{A}}^{\text{o}}}$ to meter as follows:
${\text{1}}\,{{\text{A}}^{\text{o}}}$= ${10^{ - 10}}\,{\text{m}}$
${\text{0}}{\text{.1}}\,{{\text{A}}^{\text{o}}}$= ${10^{ - 11}}\,{\text{m}}$
Now, we will convert the unit of h from J to ${\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - {\text{2}}}}$ as follows:
$1$ J = ${\text{1}}\,{\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - {\text{2}}}}$
$6.626 \times \,{10^{ - 34}}$ Js = $6.626 \times \,{10^{ - 34}}\,{\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - 1}}$
On substituting $9.1\, \times {10^{ - 31}}$ kg for mass of electron, ${10^{ - 11}}$ m for uncertainty in position, and $6.626 \times \,{10^{ - 34}}\,{\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - 1}}$for h,
${\delta x}{.\Delta v = }\,\dfrac{{\text{h}}}{{{\text{4\pi m}}}}$
${\text{1}}{{\text{0}}^{ - 11}}\,{\text{m}}\, \times \,\,{\delta v = }\,\dfrac{{6.626 \times \,{{10}^{ - 34}}\,{\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - 1}}}}{{{\text{4}} \times 3.14 \times 9.11\, \times {{10}^{ - 31}}\,{\text{kg}}}}$
$\,\,{\delta v = }\,\dfrac{{6.626 \times \,{{10}^{ - 34}}\,{\text{kg}}{{\text{m}}^{\text{2}}}{{\text{s}}^{ - 1}}}}{{{\text{1}}{{\text{0}}^{ - 11}}\,{\text{m}}\, \times \,{\text{4}} \times 3.14 \times 9.11\, \times {{10}^{ - 31}}\,{\text{kg}}}}$
$\,{\delta v = }\,\dfrac{{6.626 \times \,{{10}^{ - 34}}\,{\text{m}}{{\text{s}}^{ - 1}}}}{{1.144\, \times {{10}^{ - 40}}\,}}$
$\,{\delta v = }\,\dfrac{{6.626 \times \,{{10}^{ - 34}}\,{\text{m}}{{\text{s}}^{ - 1}}}}{{14.42\, \times {{10}^{ - 42}}\,}}$
$\,{\delta v = }\,5.79 \times \,{10^6}\,{\text{m}}{{\text{s}}^{ - 1}}$
So, the uncertainty in velocity is $5.79 \times \,{10^6}\,{\text{m}}{{\text{s}}^{ - 1}}$.
Therefore, option (C) $5.79 \times \,{10^6}\,{\text{m}}{{\text{s}}^{ - 1}}$ is correct.
Note: According to the Heisenberg uncertainty principle it is impossible to simultaneously measurement of uncertainty of position and momentum. Here, uncertainty of velocity is very high $5.79 \times \,{10^6}\,{\text{m}}{{\text{s}}^{ - 1}}$ whereas the uncertainty in position is very small ${\text{1}}{{\text{0}}^{ - 11}}\,{\text{m}}$ so, we can determine the position of this particle but cannot determine the velocity precisely. Unit conversion is important. On joule is equal to 1 Kg. meter square/ seconds square.
The product of mass of the particle and velocity is known as momentum. So, we can substitute p for v/m. We can use the Heisenberg uncertainty formula to determine the momentum of the particle also.
${\delta x}{.\Delta p = }\,\dfrac{{\text{h}}}{{{\text{4\pi }}}}$ ; Where, ${\text{p}}$is the momentum.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
