
If the length of a wire is doubled, then its resistance becomes _____.
Answer
511.3k+ views
Hint: To answer this question, we have to use the relation of the resistance with its length and the cross sectional area. From there we can compare the resistance of a wire by substituting once the original length and then the double length.
Formula used:
The formula which is used in solving this question is given by
$ R = \rho \dfrac{l}{A} $ , here $ R $ is the resistance of a wire, $ \rho $ is its resistivity, $ l $ is its length, and $ A $ is its area of cross section.
Complete answer:
Let the original length of the wire be $ l $ and the original resistance be $ R $ . Also, let $ A $ be its cross sectional area.
We know that the relation of the resistance of a wire with the length and the cross sectional area is given by
$ R = \rho \dfrac{l}{A} $ ………………..(1)
Mow, according to the question, the length of the wire is doubled. So, the new length becomes
$\Rightarrow l' = 2l $ ……………….(2)
So the new resistance of the wire is given by
$\Rightarrow R' = \rho \dfrac{{l'}}{A} $
From (2)
$\Rightarrow R' = \rho \dfrac{{2l}}{A} $
$\Rightarrow R' = 2\rho \dfrac{l}{A} $
From (1)
$\Rightarrow R' = 2R $
So, the new resistance, after doubling the length of the wire, becomes twice of the original resistance. Hence, if the length of a wire is doubled, then its resistance becomes doubled.
Note:
We must not get confused as to why the area of the cross section of the wire is taken to be constant. While we are observing the effect of doubling the length of the wire, then we have to take the other parameter, the area of cross section as constant. Otherwise the change in the value of resistance will occur due to the change in the cross sectional area also.
Formula used:
The formula which is used in solving this question is given by
$ R = \rho \dfrac{l}{A} $ , here $ R $ is the resistance of a wire, $ \rho $ is its resistivity, $ l $ is its length, and $ A $ is its area of cross section.
Complete answer:
Let the original length of the wire be $ l $ and the original resistance be $ R $ . Also, let $ A $ be its cross sectional area.
We know that the relation of the resistance of a wire with the length and the cross sectional area is given by
$ R = \rho \dfrac{l}{A} $ ………………..(1)
Mow, according to the question, the length of the wire is doubled. So, the new length becomes
$\Rightarrow l' = 2l $ ……………….(2)
So the new resistance of the wire is given by
$\Rightarrow R' = \rho \dfrac{{l'}}{A} $
From (2)
$\Rightarrow R' = \rho \dfrac{{2l}}{A} $
$\Rightarrow R' = 2\rho \dfrac{l}{A} $
From (1)
$\Rightarrow R' = 2R $
So, the new resistance, after doubling the length of the wire, becomes twice of the original resistance. Hence, if the length of a wire is doubled, then its resistance becomes doubled.
Note:
We must not get confused as to why the area of the cross section of the wire is taken to be constant. While we are observing the effect of doubling the length of the wire, then we have to take the other parameter, the area of cross section as constant. Otherwise the change in the value of resistance will occur due to the change in the cross sectional area also.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

