
If the integral \[\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}=\dfrac{k}{k+5}\], then find the value of \[k\].
(a) 1
(b) 2
(c) 3
(d) 4
Answer
520.2k+ views
Hint: In this question, in order to the value of \[k\] given that integral \[\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}=\dfrac{k}{k+5}\], we have to first simplify the integrand by substituting \[x-1=\sqrt{3}\tan y\], then in the give integral the lower limit and upper limit of the variable \[x\] should be changed \[y\] by putting the value \[x=1\] and \[x=2\] in \[x-1=\sqrt{3}\tan y\] to find the respective lower limit and upper limit of the variable when we are changing the variable from \[x\] to \[y\]. Also we have to determine the value of \[dx\] in terms of the variable \[y\] and \[dy\]. We will then evaluate the simplified integral in terms of variable \[y\].
Complete step by step answer:
Let \[I\] denote the integral \[\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}\].
That is, let \[I=\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}...........(1)\].
Now first we will factorise the expression \[{{x}^{2}}-2x+4\] by splitting the terms.
Then we have
\[\begin{align}
& {{x}^{2}}-2x+4={{x}^{2}}-2x+1+3 \\
& ={{\left( x-1 \right)}^{2}}+3..........(2)
\end{align}\]
Now on substituting the value of equation (2) in equation (1), we get
\[I=\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{\left( x-1 \right)}^{2}}+3 \right)}^{\dfrac{3}{2}}}}}...........(3)\]
Now let us suppose that \[x-1=\sqrt{3}\tan y\].
Now on differentiate \[x-1=\sqrt{3}\tan y\] where differentiation of \[\tan y\] is equals to \[{{\sec }^{2}}y\] in order to determine the value of \[dx\] in terms of the variable \[y\] and \[dy\], we will get
\[dx=\sqrt{3}{{\sec }^{2}}ydy......(4)\].
Now we will evaluate the lower limit of the integral \[I\] by the value \[x=1\] in \[x-1=\sqrt{3}\tan y\].
Putting the value the value \[x=1\] in \[x-1=\sqrt{3}\tan y\] , we get
\[\begin{align}
& 1-1=\sqrt{3}\tan y \\
& \Rightarrow 0=\sqrt{3}\tan y \\
& \Rightarrow 0=\tan y \\
\end{align}\]
Since we have \[\tan y=0\] when \[y=0\], thus the lower limit of the variable \[y\] is \[0\].
We will now calculate the upper limit of the integral \[I\] by the value \[x=2\] in \[x-1=\sqrt{3}\tan y\].
Putting the value the value \[x=2\] in \[x-1=\sqrt{3}\tan y\] , we get
\[\begin{align}
& 2-1=\sqrt{3}\tan y \\
& \Rightarrow 1=\sqrt{3}\tan y \\
& \Rightarrow \tan y=\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Since we have \[\tan y=\dfrac{1}{\sqrt{3}}\] when \[y=\dfrac{\pi }{6}\], thus the lower limit of the variable \[y\] is \[\dfrac{\pi }{6}\].
Now on equation (4) in equation (3) and by changing the lower limit and upper limit of variable \[y\] in equation (3), we will get
\[\begin{align}
& I=\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{\left( x-1 \right)}^{2}}+3 \right)}^{\dfrac{3}{2}}}}} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left( 3{{\tan }^{2}}y+3 \right)}^{\dfrac{3}{2}}}}dy} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left[ 3\left( {{\tan }^{2}}y+1 \right) \right]}^{\dfrac{3}{2}}}}dy}
\end{align}\]
Using \[1+{{\tan }^{2}}y={{\sec }^{2}}y\] in the above integral, we get
\[\begin{align}
& I==\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left[ 3\left( {{\tan }^{2}}y+1 \right) \right]}^{\dfrac{3}{2}}}}dy} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left[ 3{{\sec }^{2}}y \right]}^{\dfrac{3}{2}}}}dy} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{3\sqrt{3}{{\sec }^{3}}y}dy} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{1}{3\sec y}dy}
\end{align}\]
We will now use the identity \[\cos y=\dfrac{1}{\sec y}\] in the above integral.
That is on substituting \[\cos y=\dfrac{1}{\sec y}\] in the above integral, we will have
\[\begin{align}
& I=\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{1}{3\sec y}dy} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{1}{3}\cos ydy} \\
& =\dfrac{1}{3}\int\limits_{0}^{\dfrac{\pi }{6}}{\cos ydy} \\
& =\dfrac{1}{3}\left[ \sin y \right]_{0}^{\dfrac{\pi }{6}} \\
& =\dfrac{1}{3}\left[ \sin \dfrac{\pi }{6}-\sin 0 \right] \\
& =\dfrac{1}{3}\left[ \dfrac{1}{2}-0 \right] \\
& =\dfrac{1}{6}
\end{align}\]
Therefore we have \[\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}=\dfrac{1}{6}\].
But since it is given that \[\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}=\dfrac{k}{k+5}\], therefore we have
\[\dfrac{k}{k+5}=\dfrac{1}{6}\]
By cross multiplication of the above equation, we get
\[\begin{align}
& 6k=k+5 \\
& \Rightarrow 6k-k=5 \\
& \Rightarrow 5k=5 \\
& \Rightarrow k=1
\end{align}\]
Therefore we have that the value of \[k\] is equal to 1.
So, the correct answer is “Option A”.
Note: In this problem, while evaluating the integrals \[\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}\] we are changing the integral in terms of variable \[y\] using \[x-1=\sqrt{3}\tan y\]. Please take care of the fact that while evaluating the integral in terms of variable \[y\] we have to change everything from variable \[x\] to \[y\] including the lower limit and the upper limit of the integral.
Complete step by step answer:
Let \[I\] denote the integral \[\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}\].
That is, let \[I=\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}...........(1)\].
Now first we will factorise the expression \[{{x}^{2}}-2x+4\] by splitting the terms.
Then we have
\[\begin{align}
& {{x}^{2}}-2x+4={{x}^{2}}-2x+1+3 \\
& ={{\left( x-1 \right)}^{2}}+3..........(2)
\end{align}\]
Now on substituting the value of equation (2) in equation (1), we get
\[I=\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{\left( x-1 \right)}^{2}}+3 \right)}^{\dfrac{3}{2}}}}}...........(3)\]
Now let us suppose that \[x-1=\sqrt{3}\tan y\].
Now on differentiate \[x-1=\sqrt{3}\tan y\] where differentiation of \[\tan y\] is equals to \[{{\sec }^{2}}y\] in order to determine the value of \[dx\] in terms of the variable \[y\] and \[dy\], we will get
\[dx=\sqrt{3}{{\sec }^{2}}ydy......(4)\].
Now we will evaluate the lower limit of the integral \[I\] by the value \[x=1\] in \[x-1=\sqrt{3}\tan y\].
Putting the value the value \[x=1\] in \[x-1=\sqrt{3}\tan y\] , we get
\[\begin{align}
& 1-1=\sqrt{3}\tan y \\
& \Rightarrow 0=\sqrt{3}\tan y \\
& \Rightarrow 0=\tan y \\
\end{align}\]
Since we have \[\tan y=0\] when \[y=0\], thus the lower limit of the variable \[y\] is \[0\].
We will now calculate the upper limit of the integral \[I\] by the value \[x=2\] in \[x-1=\sqrt{3}\tan y\].
Putting the value the value \[x=2\] in \[x-1=\sqrt{3}\tan y\] , we get
\[\begin{align}
& 2-1=\sqrt{3}\tan y \\
& \Rightarrow 1=\sqrt{3}\tan y \\
& \Rightarrow \tan y=\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Since we have \[\tan y=\dfrac{1}{\sqrt{3}}\] when \[y=\dfrac{\pi }{6}\], thus the lower limit of the variable \[y\] is \[\dfrac{\pi }{6}\].
Now on equation (4) in equation (3) and by changing the lower limit and upper limit of variable \[y\] in equation (3), we will get
\[\begin{align}
& I=\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{\left( x-1 \right)}^{2}}+3 \right)}^{\dfrac{3}{2}}}}} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left( 3{{\tan }^{2}}y+3 \right)}^{\dfrac{3}{2}}}}dy} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left[ 3\left( {{\tan }^{2}}y+1 \right) \right]}^{\dfrac{3}{2}}}}dy}
\end{align}\]
Using \[1+{{\tan }^{2}}y={{\sec }^{2}}y\] in the above integral, we get
\[\begin{align}
& I==\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left[ 3\left( {{\tan }^{2}}y+1 \right) \right]}^{\dfrac{3}{2}}}}dy} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{{{\left[ 3{{\sec }^{2}}y \right]}^{\dfrac{3}{2}}}}dy} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{\sqrt{3}{{\sec }^{2}}y}{3\sqrt{3}{{\sec }^{3}}y}dy} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{1}{3\sec y}dy}
\end{align}\]
We will now use the identity \[\cos y=\dfrac{1}{\sec y}\] in the above integral.
That is on substituting \[\cos y=\dfrac{1}{\sec y}\] in the above integral, we will have
\[\begin{align}
& I=\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{1}{3\sec y}dy} \\
& =\int\limits_{0}^{\dfrac{\pi }{6}}{\dfrac{1}{3}\cos ydy} \\
& =\dfrac{1}{3}\int\limits_{0}^{\dfrac{\pi }{6}}{\cos ydy} \\
& =\dfrac{1}{3}\left[ \sin y \right]_{0}^{\dfrac{\pi }{6}} \\
& =\dfrac{1}{3}\left[ \sin \dfrac{\pi }{6}-\sin 0 \right] \\
& =\dfrac{1}{3}\left[ \dfrac{1}{2}-0 \right] \\
& =\dfrac{1}{6}
\end{align}\]
Therefore we have \[\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}=\dfrac{1}{6}\].
But since it is given that \[\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}=\dfrac{k}{k+5}\], therefore we have
\[\dfrac{k}{k+5}=\dfrac{1}{6}\]
By cross multiplication of the above equation, we get
\[\begin{align}
& 6k=k+5 \\
& \Rightarrow 6k-k=5 \\
& \Rightarrow 5k=5 \\
& \Rightarrow k=1
\end{align}\]
Therefore we have that the value of \[k\] is equal to 1.
So, the correct answer is “Option A”.
Note: In this problem, while evaluating the integrals \[\int\limits_{1}^{2}{\dfrac{dx}{{{\left( {{x}^{2}}-2x+4 \right)}^{\dfrac{3}{2}}}}}\] we are changing the integral in terms of variable \[y\] using \[x-1=\sqrt{3}\tan y\]. Please take care of the fact that while evaluating the integral in terms of variable \[y\] we have to change everything from variable \[x\] to \[y\] including the lower limit and the upper limit of the integral.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

State and explain Coulombs law in electrostatics class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE
