
If the integral can be defined as \[{{\text{I}}_{{\text{m,n}}}} = \int_0^1 {{{\text{x}}^{\text{m}}}{{\left( {{\text{log x}}} \right)}^{\text{n}}}{\text{dx, }}} \]then on simplification \[{{\text{I}}_{{\text{m,n}}}}\] is equal to/ can also be expressed as which of the four given options?
$
{\text{A}}{\text{. }}\dfrac{{\text{n}}}{{{\text{n + 1}}}}{{\text{I}}_{{\text{m,n - 1}}}} \\
{\text{B}}{\text{. - }}\dfrac{{\text{n}}}{{{\text{m + 1}}}}{{\text{I}}_{{\text{m,n - 1}}}} \\
{\text{C}}{\text{. - }}\dfrac{1}{{{\text{m + 1}}}}{{\text{I}}_{{\text{m,n - 1}}}} \\
{\text{D}}{\text{. }}\dfrac{{\text{m}}}{{{\text{n + 1}}}}{{\text{I}}_{{\text{m,n - 1}}}} \\
$
Answer
612k+ views
Hint – Check out properties of definite integrals. Apply integration by parts rule to simplify the expression then you will get the solution.
Complete step-by-step answer:
Given Data, \[{{\text{I}}_{{\text{m,n}}}} = \int_0^1 {{{\text{x}}^{\text{m}}}{{\left( {{\text{log x}}} \right)}^{\text{n}}}{\text{dx, }}} \]
If the given function consists of two parts of the function that are multiplied by each other, then for easily computing it we use the integration by parts rule.
Let’s say there is a function a.b, then the integral of a.b i.e. $\int{a.b} = a\int {b} - \int ({{a’} \int {b}}) $.
Comparing \[{{\text{I}}_{{\text{m,n}}}} = \int_0^1 {{{\text{x}}^{\text{m}}}{{\left( {{\text{log x}}} \right)}^{\text{n}}}{\text{dx, }}} \]and $\int{a.b} = a\int {b} - \int ({{a’} \int {b}}) $, let us say
a = \[{\left( {{\text{log x}}} \right)^{\text{n}}}\]and b = \[{{\text{x}}^{\text{m}}}\]
⟹$a’= \dfrac{d}{dx}({log x})^{n} = n({log x})^{n - 1}\dfrac{1}{x}( \dfrac{d}{dx}(\because {log x} = \dfrac{1}{x} )$
Apply integration by parts rule to the given equation, we get
\[{{\text{I}}_{{\text{m,n}}}} = {\left( {{\text{log x}}} \right)^{\text{n}}}\int_0^1 {{{\text{x}}^{\text{m}}}} - \int_0^1 {\dfrac{{\text{d}}}{{{\text{dx}}}}{{\left( {{\text{logx}}} \right)}^{\text{n}}}\int_0^1 {{{\text{x}}^{\text{m}}}} {\text{dx}}} \]
⟹\[{{\text{I}}_{{\text{m,n}}}} = \left[ {{{\left( {{\text{log x}}} \right)}^{\text{n}}}\dfrac{{{{\text{x}}^{{\text{m + 1}}}}}}{{{\text{m + 1}}}}} \right]_0^1{\text{ }} - \int_0^1 {{\text{n}}{{\left( {{\text{logx}}} \right)}^{{\text{n - 1}}}}\dfrac{1}{{\text{x}}}\dfrac{{{{\text{x}}^{{\text{m + 1}}}}}}{{{\text{m + 1}}}}{\text{dx}}} {\text{ }}\]
\[{\text{ - - - }}\left( {{\text{Using the formulae }}\int_0^1 {{{\text{a}}^{\text{b}}}} = \dfrac{{{{\text{a}}^{{\text{b + 1}}}}}}{{{\text{b + 1}}}}{\text{ and }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{logk}}} \right) = \dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{logk}}} \right)\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{k}} \right){\text{ respectively}}} \right)\]
After integrating the terms under limits, we have to substitute the upper limit in the result and subtract the lower limit substituted result from it. Then on further simplification we get,
⟹\[{{\text{I}}_{{\text{m,n}}}} = 0 - \dfrac{{\text{n}}}{{{\text{m + 1}}}}\int_0^1 {{{\text{x}}^{\text{m}}}{{\left( {{\text{logx}}} \right)}^{{\text{n - 1}}}}{\text{dx }}} {\text{ }}\]
(The first term becomes zero, as x takes the value 0, the entire term becomes zero when multiplied by x.)
Comparing this term to the given, we get
⟹${{\text{I}}_{{\text{m,n}}}} = $$ - \dfrac{{\text{n}}}{{{\text{m + 1}}}}{{\text{I}}_{{\text{m,n - 1}}}}$
Hence, Option B is the correct answer.
Note – In order to solve these types of problems the key is to make the given function simple by rearranging or applying known identities to determine the answer. For understanding which identity we should use, just go through the options then try to implement identities.
Complete step-by-step answer:
Given Data, \[{{\text{I}}_{{\text{m,n}}}} = \int_0^1 {{{\text{x}}^{\text{m}}}{{\left( {{\text{log x}}} \right)}^{\text{n}}}{\text{dx, }}} \]
If the given function consists of two parts of the function that are multiplied by each other, then for easily computing it we use the integration by parts rule.
Let’s say there is a function a.b, then the integral of a.b i.e. $\int{a.b} = a\int {b} - \int ({{a’} \int {b}}) $.
Comparing \[{{\text{I}}_{{\text{m,n}}}} = \int_0^1 {{{\text{x}}^{\text{m}}}{{\left( {{\text{log x}}} \right)}^{\text{n}}}{\text{dx, }}} \]and $\int{a.b} = a\int {b} - \int ({{a’} \int {b}}) $, let us say
a = \[{\left( {{\text{log x}}} \right)^{\text{n}}}\]and b = \[{{\text{x}}^{\text{m}}}\]
⟹$a’= \dfrac{d}{dx}({log x})^{n} = n({log x})^{n - 1}\dfrac{1}{x}( \dfrac{d}{dx}(\because {log x} = \dfrac{1}{x} )$
Apply integration by parts rule to the given equation, we get
\[{{\text{I}}_{{\text{m,n}}}} = {\left( {{\text{log x}}} \right)^{\text{n}}}\int_0^1 {{{\text{x}}^{\text{m}}}} - \int_0^1 {\dfrac{{\text{d}}}{{{\text{dx}}}}{{\left( {{\text{logx}}} \right)}^{\text{n}}}\int_0^1 {{{\text{x}}^{\text{m}}}} {\text{dx}}} \]
⟹\[{{\text{I}}_{{\text{m,n}}}} = \left[ {{{\left( {{\text{log x}}} \right)}^{\text{n}}}\dfrac{{{{\text{x}}^{{\text{m + 1}}}}}}{{{\text{m + 1}}}}} \right]_0^1{\text{ }} - \int_0^1 {{\text{n}}{{\left( {{\text{logx}}} \right)}^{{\text{n - 1}}}}\dfrac{1}{{\text{x}}}\dfrac{{{{\text{x}}^{{\text{m + 1}}}}}}{{{\text{m + 1}}}}{\text{dx}}} {\text{ }}\]
\[{\text{ - - - }}\left( {{\text{Using the formulae }}\int_0^1 {{{\text{a}}^{\text{b}}}} = \dfrac{{{{\text{a}}^{{\text{b + 1}}}}}}{{{\text{b + 1}}}}{\text{ and }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{logk}}} \right) = \dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{logk}}} \right)\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{k}} \right){\text{ respectively}}} \right)\]
After integrating the terms under limits, we have to substitute the upper limit in the result and subtract the lower limit substituted result from it. Then on further simplification we get,
⟹\[{{\text{I}}_{{\text{m,n}}}} = 0 - \dfrac{{\text{n}}}{{{\text{m + 1}}}}\int_0^1 {{{\text{x}}^{\text{m}}}{{\left( {{\text{logx}}} \right)}^{{\text{n - 1}}}}{\text{dx }}} {\text{ }}\]
(The first term becomes zero, as x takes the value 0, the entire term becomes zero when multiplied by x.)
Comparing this term to the given, we get
⟹${{\text{I}}_{{\text{m,n}}}} = $$ - \dfrac{{\text{n}}}{{{\text{m + 1}}}}{{\text{I}}_{{\text{m,n - 1}}}}$
Hence, Option B is the correct answer.
Note – In order to solve these types of problems the key is to make the given function simple by rearranging or applying known identities to determine the answer. For understanding which identity we should use, just go through the options then try to implement identities.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

