Answer
Verified
438.3k+ views
Hint: We start solving the problem by finding the function $g\left( x \right)=f\left( f\left( x \right) \right)$. We use the fact that the function $\left| x-a \right|$ is not differentiable at $x=a$ to get our first non-differentiable point. Similarly, we get a function that resembles the function $\left| x-a \right|$ later while solving the problem to get two more non- differentiable points to get the required solution set for x.
Complete step-by-step answer:
According to the problem, we have defined function f as $f\left( x \right)=15-\left| x-10 \right|$; $x\in R$. We need to find the set of all values of x at which the function $g\left( x \right)=f\left( f\left( x \right) \right)$ is not differentiable.
Let us first find the function $g\left( x \right)$. We have $g\left( x \right)=f\left( f\left( x \right) \right)$.
$\Rightarrow g\left( x \right)=f\left( 15-\left| x-10 \right| \right)$.
$\Rightarrow g\left( x \right)=15-\left| 15-\left| x-10 \right|-10 \right|$.
$\Rightarrow g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$.
We have found the function ‘g’ as $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$.
We know that the function $\left| x-a \right|$ is not differentiable at $x=a$. Using this fact, we can say that $f\left( x \right)=15-\left| x-10 \right|$ is not differentiable at $x=10$ as the function $\left| x-10 \right|$ is not differentiable at $x=10$. This makes the function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ is not differentiable at $x=10$ ---(1).
Now, we can see that the function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ has another function $\left| 5-\left| x-10 \right| \right|$ which not differentiable at $\left| x-10 \right|=5$. Now, we find the absolute values at which $\left| x-10 \right|=5$ holds true.
We know that $\left| x-a \right|=\left\{ \begin{matrix}
x-a,\text{ if }x > a \\
-\left( x-a \right),\text{ if }x < a \\
\end{matrix} \right.$. Using this fact, we get $x-10=5$ and $x-10=-5$.
$\Rightarrow x=5+10$ and $x=-5+10$.
$\Rightarrow x=15$ and $x=5$.
So, we get the function $\left| 5-\left| x-10 \right| \right|$ not differentiable at $x=15$ and $x=5$ which makes the function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ not differentiable at $x=15$ and $x=5$ ---(2).
From equations (1) and (2), we can see that the function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ is not differentiable at $x=10$, $x=15$ and $x=5$.
We have found the set of all values of x at which $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ is not differentiable as $x=\left\{ 5,10,15 \right\}$.
∴ The set of all values of x at which $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ is not differentiable as $x=\left\{ 5,10,15 \right\}$.
The correct option for the given problem is (c).
Note: We can alternatively solve by drawing the graph of the function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ and finding the sharp edges in that curve.
We can see that the graph has sharp edges at $x=5$, $x=10$ and $x=15$ which makes the given function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ non-differentiable at those points. Whenever we see the problems to find the non-differentiable points, it is recommended to draw a graph and check the values of x at which the sharp edges occur.
Complete step-by-step answer:
According to the problem, we have defined function f as $f\left( x \right)=15-\left| x-10 \right|$; $x\in R$. We need to find the set of all values of x at which the function $g\left( x \right)=f\left( f\left( x \right) \right)$ is not differentiable.
Let us first find the function $g\left( x \right)$. We have $g\left( x \right)=f\left( f\left( x \right) \right)$.
$\Rightarrow g\left( x \right)=f\left( 15-\left| x-10 \right| \right)$.
$\Rightarrow g\left( x \right)=15-\left| 15-\left| x-10 \right|-10 \right|$.
$\Rightarrow g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$.
We have found the function ‘g’ as $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$.
We know that the function $\left| x-a \right|$ is not differentiable at $x=a$. Using this fact, we can say that $f\left( x \right)=15-\left| x-10 \right|$ is not differentiable at $x=10$ as the function $\left| x-10 \right|$ is not differentiable at $x=10$. This makes the function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ is not differentiable at $x=10$ ---(1).
Now, we can see that the function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ has another function $\left| 5-\left| x-10 \right| \right|$ which not differentiable at $\left| x-10 \right|=5$. Now, we find the absolute values at which $\left| x-10 \right|=5$ holds true.
We know that $\left| x-a \right|=\left\{ \begin{matrix}
x-a,\text{ if }x > a \\
-\left( x-a \right),\text{ if }x < a \\
\end{matrix} \right.$. Using this fact, we get $x-10=5$ and $x-10=-5$.
$\Rightarrow x=5+10$ and $x=-5+10$.
$\Rightarrow x=15$ and $x=5$.
So, we get the function $\left| 5-\left| x-10 \right| \right|$ not differentiable at $x=15$ and $x=5$ which makes the function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ not differentiable at $x=15$ and $x=5$ ---(2).
From equations (1) and (2), we can see that the function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ is not differentiable at $x=10$, $x=15$ and $x=5$.
We have found the set of all values of x at which $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ is not differentiable as $x=\left\{ 5,10,15 \right\}$.
∴ The set of all values of x at which $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ is not differentiable as $x=\left\{ 5,10,15 \right\}$.
The correct option for the given problem is (c).
Note: We can alternatively solve by drawing the graph of the function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ and finding the sharp edges in that curve.
We can see that the graph has sharp edges at $x=5$, $x=10$ and $x=15$ which makes the given function $g\left( x \right)=15-\left| 5-\left| x-10 \right| \right|$ non-differentiable at those points. Whenever we see the problems to find the non-differentiable points, it is recommended to draw a graph and check the values of x at which the sharp edges occur.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers