
If the first term of a sequence is $ a = 2 $ and the common ratio between the terms are $ r = - \dfrac{2}{3} $ . Then find the sum of the first $ 6 $ terms of the geometric progression.
Answer
531.3k+ views
Hint: Geometric progression is similar to arithmetic progression, it has a fixed pattern. The pattern here is in the common ratio that is ratio of the current term to its previous term, this value will be the same between every pair of consecutive numbers in the sequence. Since the first term of the sequence and common ratio are given, find the sum using the formula for the sum of $ n $ terms of a geometric progression, here $ n = 6 $ .
Complete step-by-step answer:
Let us first write down the observations from the question itself.
The data given to us says that;
$ a = 2 $ , here $ a $ denotes the first term of the required sequence.
$ r = - \dfrac{2}{3} $ , it is common ratio or ratio between current term and its previous term
To find: $ S_6 $ that is the sum of first $ 6 $ terms in the geometric sequence.
To find the sum $ S_6 $ we can use the formula for $ n $ terms in a geometric progression, here since $ r < 1 $ , we use the case of sum where $ r < 1 $ , that is;
$ \Rightarrow Sn = \dfrac{{a.(1 - {r^n})}}{{(1 - r)}} $
Substituting the given values of $ a = 2 $ and $ r = - \dfrac{2}{3} $ we get;
$ \Rightarrow S_6 = \dfrac{{2 \times [1 - {{( - \dfrac{2}{3})}^6}]}}{{[1 - ( - \dfrac{2}{3})]}} $
$ \Rightarrow S_6 = \dfrac{{2 \times [1 - {{( - \dfrac{2}{3})}^6}]}}{{[\dfrac{5}{3}]}} $
$ \Rightarrow S_6 = \dfrac{6}{5} \times (\dfrac{{729 - 64}}{{{3^6}}}) $
$ \Rightarrow S_6 = \dfrac{6}{5} \times (\dfrac{{665}}{{729}}) $
$ \Rightarrow S_6 = \dfrac{{266}}{{243}} $
Therefore the sum of the first $ 6 $ terms ( $ S_6 $ )of this geometric progression is $ \dfrac{{266}}{{243}} $ .
So, the correct answer is “ $ \dfrac{{266}}{{243}} $ ”.
Note: Similar to a geometric progression we have another sequence called the arithmetic progression. It is a sequence of numbers which have a common difference between every pair of consecutive integers. So if the first term and common difference of a sequence are given, then we can utilize them to find any term in the sequence. Each term can be denoted in general as $ an $ , here we can find $ an $ using a general formula that is;
$ an = a + (n - 1)d $ , where $ a $ is the first term of the sequence, $ d $ is the common difference and $ n $ is the number of terms.
Complete step-by-step answer:
Let us first write down the observations from the question itself.
The data given to us says that;
$ a = 2 $ , here $ a $ denotes the first term of the required sequence.
$ r = - \dfrac{2}{3} $ , it is common ratio or ratio between current term and its previous term
To find: $ S_6 $ that is the sum of first $ 6 $ terms in the geometric sequence.
To find the sum $ S_6 $ we can use the formula for $ n $ terms in a geometric progression, here since $ r < 1 $ , we use the case of sum where $ r < 1 $ , that is;
$ \Rightarrow Sn = \dfrac{{a.(1 - {r^n})}}{{(1 - r)}} $
Substituting the given values of $ a = 2 $ and $ r = - \dfrac{2}{3} $ we get;
$ \Rightarrow S_6 = \dfrac{{2 \times [1 - {{( - \dfrac{2}{3})}^6}]}}{{[1 - ( - \dfrac{2}{3})]}} $
$ \Rightarrow S_6 = \dfrac{{2 \times [1 - {{( - \dfrac{2}{3})}^6}]}}{{[\dfrac{5}{3}]}} $
$ \Rightarrow S_6 = \dfrac{6}{5} \times (\dfrac{{729 - 64}}{{{3^6}}}) $
$ \Rightarrow S_6 = \dfrac{6}{5} \times (\dfrac{{665}}{{729}}) $
$ \Rightarrow S_6 = \dfrac{{266}}{{243}} $
Therefore the sum of the first $ 6 $ terms ( $ S_6 $ )of this geometric progression is $ \dfrac{{266}}{{243}} $ .
So, the correct answer is “ $ \dfrac{{266}}{{243}} $ ”.
Note: Similar to a geometric progression we have another sequence called the arithmetic progression. It is a sequence of numbers which have a common difference between every pair of consecutive integers. So if the first term and common difference of a sequence are given, then we can utilize them to find any term in the sequence. Each term can be denoted in general as $ an $ , here we can find $ an $ using a general formula that is;
$ an = a + (n - 1)d $ , where $ a $ is the first term of the sequence, $ d $ is the common difference and $ n $ is the number of terms.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

