
If the determinant $ \left| \begin{matrix}
\cos 2x & {{\sin }^{2}}x & \cos 4x \\
{{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\
\cos 4x & {{\cos }^{2}}x & \cos 2x \\
\end{matrix} \right| $ is expanded in the powers of $ \sin x $ then the negative of the constant term in the expansion is___________.
(A) 1
(B) -1
(C) -2
(D) 0
Answer
565.8k+ views
Hint: For answering this question we will expand this determinant and simplify it by using the below formula
$ \begin{align}
& \cos 2x=1-2{{\sin }^{2}}x \\
& {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
\end{align} $
From these two we can get
$ \begin{align}
& \cos 4x=2\left( 1-2{{\sin }^{2}}x \right)-1 \\
& {{\cos }^{4}}x={{\left( 1-{{\sin }^{2}}x \right)}^{2}} \\
\end{align} $
The minor of $ {{a}_{ij}} $ is represented by $ {{M}_{ij}} $ and for example for any $ 3\times 3 $ matrix the minor of $ {{a}_{21}} $ is represented by $ {{M}_{21}} $ and is given by $ \left| \begin{matrix}
{{a}_{12}} & {{a}_{13}} \\
{{a}_{32}} & {{a}_{23}} \\
\end{matrix} \right| $ . The cofactor of $ {{a}_{ij}} $ is represented by $ {{C}_{ij}} $ is given by $ {{C}_{ij}}={{\left( -1 \right)}^{i+j}}{{M}_{ij}} $ .The determinant of any $ 3\times 3 $ matrix is given by $ ={{a}_{11}}{{C}_{11}}+{{a}_{12}}{{C}_{12}}+{{a}_{13}}{{C}_{13}}. $
Complete step-by-step answer:
Let us get started by expanding the determinant
$ \left| \begin{matrix}
\cos 2x & {{\sin }^{2}}x & \cos 4x \\
{{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\
\cos 4x & {{\cos }^{2}}x & \cos 2x \\
\end{matrix} \right|=\cos 2x\left( {{\cos }^{2}}2x-{{\cos }^{4}}x \right)-{{\sin }^{2}}x\left( \sin {{x}^{2}}\cos 2x-{{\cos }^{2}}x\cos 4x \right)+\cos 4x\left( {{\sin }^{2}}x{{\cos }^{2}}x-\cos 2x\cos 4x \right) $ $ \Rightarrow {{\cos }^{3}}2x-\cos 2x{{\cos }^{4}}x-{{\sin }^{4}}x\cos 2x+{{\sin }^{2}}x{{\cos }^{2}}x\cos 4x+\cos 4x{{\sin }^{2}}x{{\cos }^{2}}x-{{\cos }^{2}}4x\cos 2x $
By using $ \cos 2x=1-2{{\sin }^{2}}x $ identity, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+{{\sin }^{2}}x{{\cos }^{2}}x\cos 4x+\cos 4x{{\sin }^{2}}x{{\cos }^{2}}x- \\
& {{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ {{\cos }^{2}}x=1-{{\sin }^{2}}x $ identity, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x+ \\
& \cos 4x{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)-{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
Adding up similar terms, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x \\
& -{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ {{\cos }^{4}}x={{\left( 1-{{\sin }^{2}}x \right)}^{2}} $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x \\
& -{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ \cos 4x=2\left( 1-2{{\sin }^{2}}x \right)-1 $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\left( 2\left( 1-2{{\sin }^{2}}x \right)-1 \right) \\
& -{{\left( 2\left( 1-2{{\sin }^{2}}x \right)-1 \right)}^{2}}\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By simplifying $ 2\left( 1-2{{\sin }^{2}}x \right)-1=1-4{{\sin }^{2}}x $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\left( 1-4{{\sin }^{2}}x \right) \\
& -{{\left( 1-4{{\sin }^{2}}x \right)}^{2}}\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
Here if we observe that now we have all terms as the powers of $ \sin x $ now we need to find the value of the constant term in the expansion for that if we assume $ x=0 $ then all other terms containing the powers of $ \sin x $ will become zero.
Let us do that
We know that $ \sin 0=0 $ so by substituting that we will get
$ \begin{align}
& \Rightarrow {{\left( 1-0 \right)}^{3}}-\left( 1-0 \right){{\left( 1-0 \right)}^{2}}-0\left( 1-0 \right)+2.0\left( 1-0 \right)\left( 1-0 \right)-{{\left( 1-0 \right)}^{2}}\left( 1-0 \right) \\
& \Rightarrow 1-1-1 \\
& \Rightarrow -1 \\
\end{align} $
Here we need a negative of the constant term of the expansion of the determinant that is 1.
So, the correct answer is “Option A”.
Note: We can also answer this question in other way as it is given that the determinant is expanded in the powers of $ \sin x $ we can assume that expansion to be
$ \left| \begin{matrix}
\cos 2x & {{\sin }^{2}}x & \cos 4x \\
{{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\
\cos 4x & {{\cos }^{2}}x & \cos 2x \\
\end{matrix} \right|={{a}_{0}}+{{a}_{1}}\sin x+{{a}_{2}}{{\sin }^{2}}x+..........and\text{ so on} $
Here if we observe this now we have all terms as the powers of $ \sin x $ Now we need to find the value of the constant term in the expansion for that if we assume $ x=0 $ then all other terms containing the powers of $ \sin x $ will become zero. Let us apply the value of $ x $ in the determinant.
$ \left| \begin{matrix}
\cos 0 & {{\sin }^{2}}0 & \cos 0 \\
{{\sin }^{2}}0 & \cos 0 & {{\cos }^{2}}0 \\
\cos 0 & {{\cos }^{2}}0 & \cos 0 \\
\end{matrix} \right|={{a}_{0}} $
Since we know that $ \sin 0=0 $ and $ \cos 0=1 $ we will have
$ \left| \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{matrix} \right|={{a}_{0}} $
By expanding the above determinant we will have
$ \begin{align}
& \left| \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{matrix} \right|={{a}_{0}} \\
& \Rightarrow 1\left( 1-1 \right)-0\left( 0-1 \right)+1\left( 0-1 \right)={{a}_{0}} \\
& \Rightarrow -1={{a}_{0}} \\
\end{align} $
As we need the negative of the constant term that is negative of $ {{a}_{0}} $ that is 1.
Hence we end up with a conclusion saying that option (A) is correct.
$ \begin{align}
& \cos 2x=1-2{{\sin }^{2}}x \\
& {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
\end{align} $
From these two we can get
$ \begin{align}
& \cos 4x=2\left( 1-2{{\sin }^{2}}x \right)-1 \\
& {{\cos }^{4}}x={{\left( 1-{{\sin }^{2}}x \right)}^{2}} \\
\end{align} $
The minor of $ {{a}_{ij}} $ is represented by $ {{M}_{ij}} $ and for example for any $ 3\times 3 $ matrix the minor of $ {{a}_{21}} $ is represented by $ {{M}_{21}} $ and is given by $ \left| \begin{matrix}
{{a}_{12}} & {{a}_{13}} \\
{{a}_{32}} & {{a}_{23}} \\
\end{matrix} \right| $ . The cofactor of $ {{a}_{ij}} $ is represented by $ {{C}_{ij}} $ is given by $ {{C}_{ij}}={{\left( -1 \right)}^{i+j}}{{M}_{ij}} $ .The determinant of any $ 3\times 3 $ matrix is given by $ ={{a}_{11}}{{C}_{11}}+{{a}_{12}}{{C}_{12}}+{{a}_{13}}{{C}_{13}}. $
Complete step-by-step answer:
Let us get started by expanding the determinant
$ \left| \begin{matrix}
\cos 2x & {{\sin }^{2}}x & \cos 4x \\
{{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\
\cos 4x & {{\cos }^{2}}x & \cos 2x \\
\end{matrix} \right|=\cos 2x\left( {{\cos }^{2}}2x-{{\cos }^{4}}x \right)-{{\sin }^{2}}x\left( \sin {{x}^{2}}\cos 2x-{{\cos }^{2}}x\cos 4x \right)+\cos 4x\left( {{\sin }^{2}}x{{\cos }^{2}}x-\cos 2x\cos 4x \right) $ $ \Rightarrow {{\cos }^{3}}2x-\cos 2x{{\cos }^{4}}x-{{\sin }^{4}}x\cos 2x+{{\sin }^{2}}x{{\cos }^{2}}x\cos 4x+\cos 4x{{\sin }^{2}}x{{\cos }^{2}}x-{{\cos }^{2}}4x\cos 2x $
By using $ \cos 2x=1-2{{\sin }^{2}}x $ identity, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+{{\sin }^{2}}x{{\cos }^{2}}x\cos 4x+\cos 4x{{\sin }^{2}}x{{\cos }^{2}}x- \\
& {{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ {{\cos }^{2}}x=1-{{\sin }^{2}}x $ identity, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x+ \\
& \cos 4x{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)-{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
Adding up similar terms, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x \\
& -{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ {{\cos }^{4}}x={{\left( 1-{{\sin }^{2}}x \right)}^{2}} $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x \\
& -{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ \cos 4x=2\left( 1-2{{\sin }^{2}}x \right)-1 $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\left( 2\left( 1-2{{\sin }^{2}}x \right)-1 \right) \\
& -{{\left( 2\left( 1-2{{\sin }^{2}}x \right)-1 \right)}^{2}}\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By simplifying $ 2\left( 1-2{{\sin }^{2}}x \right)-1=1-4{{\sin }^{2}}x $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\left( 1-4{{\sin }^{2}}x \right) \\
& -{{\left( 1-4{{\sin }^{2}}x \right)}^{2}}\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
Here if we observe that now we have all terms as the powers of $ \sin x $ now we need to find the value of the constant term in the expansion for that if we assume $ x=0 $ then all other terms containing the powers of $ \sin x $ will become zero.
Let us do that
We know that $ \sin 0=0 $ so by substituting that we will get
$ \begin{align}
& \Rightarrow {{\left( 1-0 \right)}^{3}}-\left( 1-0 \right){{\left( 1-0 \right)}^{2}}-0\left( 1-0 \right)+2.0\left( 1-0 \right)\left( 1-0 \right)-{{\left( 1-0 \right)}^{2}}\left( 1-0 \right) \\
& \Rightarrow 1-1-1 \\
& \Rightarrow -1 \\
\end{align} $
Here we need a negative of the constant term of the expansion of the determinant that is 1.
So, the correct answer is “Option A”.
Note: We can also answer this question in other way as it is given that the determinant is expanded in the powers of $ \sin x $ we can assume that expansion to be
$ \left| \begin{matrix}
\cos 2x & {{\sin }^{2}}x & \cos 4x \\
{{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\
\cos 4x & {{\cos }^{2}}x & \cos 2x \\
\end{matrix} \right|={{a}_{0}}+{{a}_{1}}\sin x+{{a}_{2}}{{\sin }^{2}}x+..........and\text{ so on} $
Here if we observe this now we have all terms as the powers of $ \sin x $ Now we need to find the value of the constant term in the expansion for that if we assume $ x=0 $ then all other terms containing the powers of $ \sin x $ will become zero. Let us apply the value of $ x $ in the determinant.
$ \left| \begin{matrix}
\cos 0 & {{\sin }^{2}}0 & \cos 0 \\
{{\sin }^{2}}0 & \cos 0 & {{\cos }^{2}}0 \\
\cos 0 & {{\cos }^{2}}0 & \cos 0 \\
\end{matrix} \right|={{a}_{0}} $
Since we know that $ \sin 0=0 $ and $ \cos 0=1 $ we will have
$ \left| \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{matrix} \right|={{a}_{0}} $
By expanding the above determinant we will have
$ \begin{align}
& \left| \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{matrix} \right|={{a}_{0}} \\
& \Rightarrow 1\left( 1-1 \right)-0\left( 0-1 \right)+1\left( 0-1 \right)={{a}_{0}} \\
& \Rightarrow -1={{a}_{0}} \\
\end{align} $
As we need the negative of the constant term that is negative of $ {{a}_{0}} $ that is 1.
Hence we end up with a conclusion saying that option (A) is correct.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

