
If the determinant $ \left| \begin{matrix}
\cos 2x & {{\sin }^{2}}x & \cos 4x \\
{{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\
\cos 4x & {{\cos }^{2}}x & \cos 2x \\
\end{matrix} \right| $ is expanded in the powers of $ \sin x $ then the negative of the constant term in the expansion is___________.
(A) 1
(B) -1
(C) -2
(D) 0
Answer
564.9k+ views
Hint: For answering this question we will expand this determinant and simplify it by using the below formula
$ \begin{align}
& \cos 2x=1-2{{\sin }^{2}}x \\
& {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
\end{align} $
From these two we can get
$ \begin{align}
& \cos 4x=2\left( 1-2{{\sin }^{2}}x \right)-1 \\
& {{\cos }^{4}}x={{\left( 1-{{\sin }^{2}}x \right)}^{2}} \\
\end{align} $
The minor of $ {{a}_{ij}} $ is represented by $ {{M}_{ij}} $ and for example for any $ 3\times 3 $ matrix the minor of $ {{a}_{21}} $ is represented by $ {{M}_{21}} $ and is given by $ \left| \begin{matrix}
{{a}_{12}} & {{a}_{13}} \\
{{a}_{32}} & {{a}_{23}} \\
\end{matrix} \right| $ . The cofactor of $ {{a}_{ij}} $ is represented by $ {{C}_{ij}} $ is given by $ {{C}_{ij}}={{\left( -1 \right)}^{i+j}}{{M}_{ij}} $ .The determinant of any $ 3\times 3 $ matrix is given by $ ={{a}_{11}}{{C}_{11}}+{{a}_{12}}{{C}_{12}}+{{a}_{13}}{{C}_{13}}. $
Complete step-by-step answer:
Let us get started by expanding the determinant
$ \left| \begin{matrix}
\cos 2x & {{\sin }^{2}}x & \cos 4x \\
{{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\
\cos 4x & {{\cos }^{2}}x & \cos 2x \\
\end{matrix} \right|=\cos 2x\left( {{\cos }^{2}}2x-{{\cos }^{4}}x \right)-{{\sin }^{2}}x\left( \sin {{x}^{2}}\cos 2x-{{\cos }^{2}}x\cos 4x \right)+\cos 4x\left( {{\sin }^{2}}x{{\cos }^{2}}x-\cos 2x\cos 4x \right) $ $ \Rightarrow {{\cos }^{3}}2x-\cos 2x{{\cos }^{4}}x-{{\sin }^{4}}x\cos 2x+{{\sin }^{2}}x{{\cos }^{2}}x\cos 4x+\cos 4x{{\sin }^{2}}x{{\cos }^{2}}x-{{\cos }^{2}}4x\cos 2x $
By using $ \cos 2x=1-2{{\sin }^{2}}x $ identity, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+{{\sin }^{2}}x{{\cos }^{2}}x\cos 4x+\cos 4x{{\sin }^{2}}x{{\cos }^{2}}x- \\
& {{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ {{\cos }^{2}}x=1-{{\sin }^{2}}x $ identity, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x+ \\
& \cos 4x{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)-{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
Adding up similar terms, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x \\
& -{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ {{\cos }^{4}}x={{\left( 1-{{\sin }^{2}}x \right)}^{2}} $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x \\
& -{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ \cos 4x=2\left( 1-2{{\sin }^{2}}x \right)-1 $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\left( 2\left( 1-2{{\sin }^{2}}x \right)-1 \right) \\
& -{{\left( 2\left( 1-2{{\sin }^{2}}x \right)-1 \right)}^{2}}\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By simplifying $ 2\left( 1-2{{\sin }^{2}}x \right)-1=1-4{{\sin }^{2}}x $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\left( 1-4{{\sin }^{2}}x \right) \\
& -{{\left( 1-4{{\sin }^{2}}x \right)}^{2}}\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
Here if we observe that now we have all terms as the powers of $ \sin x $ now we need to find the value of the constant term in the expansion for that if we assume $ x=0 $ then all other terms containing the powers of $ \sin x $ will become zero.
Let us do that
We know that $ \sin 0=0 $ so by substituting that we will get
$ \begin{align}
& \Rightarrow {{\left( 1-0 \right)}^{3}}-\left( 1-0 \right){{\left( 1-0 \right)}^{2}}-0\left( 1-0 \right)+2.0\left( 1-0 \right)\left( 1-0 \right)-{{\left( 1-0 \right)}^{2}}\left( 1-0 \right) \\
& \Rightarrow 1-1-1 \\
& \Rightarrow -1 \\
\end{align} $
Here we need a negative of the constant term of the expansion of the determinant that is 1.
So, the correct answer is “Option A”.
Note: We can also answer this question in other way as it is given that the determinant is expanded in the powers of $ \sin x $ we can assume that expansion to be
$ \left| \begin{matrix}
\cos 2x & {{\sin }^{2}}x & \cos 4x \\
{{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\
\cos 4x & {{\cos }^{2}}x & \cos 2x \\
\end{matrix} \right|={{a}_{0}}+{{a}_{1}}\sin x+{{a}_{2}}{{\sin }^{2}}x+..........and\text{ so on} $
Here if we observe this now we have all terms as the powers of $ \sin x $ Now we need to find the value of the constant term in the expansion for that if we assume $ x=0 $ then all other terms containing the powers of $ \sin x $ will become zero. Let us apply the value of $ x $ in the determinant.
$ \left| \begin{matrix}
\cos 0 & {{\sin }^{2}}0 & \cos 0 \\
{{\sin }^{2}}0 & \cos 0 & {{\cos }^{2}}0 \\
\cos 0 & {{\cos }^{2}}0 & \cos 0 \\
\end{matrix} \right|={{a}_{0}} $
Since we know that $ \sin 0=0 $ and $ \cos 0=1 $ we will have
$ \left| \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{matrix} \right|={{a}_{0}} $
By expanding the above determinant we will have
$ \begin{align}
& \left| \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{matrix} \right|={{a}_{0}} \\
& \Rightarrow 1\left( 1-1 \right)-0\left( 0-1 \right)+1\left( 0-1 \right)={{a}_{0}} \\
& \Rightarrow -1={{a}_{0}} \\
\end{align} $
As we need the negative of the constant term that is negative of $ {{a}_{0}} $ that is 1.
Hence we end up with a conclusion saying that option (A) is correct.
$ \begin{align}
& \cos 2x=1-2{{\sin }^{2}}x \\
& {{\cos }^{2}}x=1-{{\sin }^{2}}x \\
\end{align} $
From these two we can get
$ \begin{align}
& \cos 4x=2\left( 1-2{{\sin }^{2}}x \right)-1 \\
& {{\cos }^{4}}x={{\left( 1-{{\sin }^{2}}x \right)}^{2}} \\
\end{align} $
The minor of $ {{a}_{ij}} $ is represented by $ {{M}_{ij}} $ and for example for any $ 3\times 3 $ matrix the minor of $ {{a}_{21}} $ is represented by $ {{M}_{21}} $ and is given by $ \left| \begin{matrix}
{{a}_{12}} & {{a}_{13}} \\
{{a}_{32}} & {{a}_{23}} \\
\end{matrix} \right| $ . The cofactor of $ {{a}_{ij}} $ is represented by $ {{C}_{ij}} $ is given by $ {{C}_{ij}}={{\left( -1 \right)}^{i+j}}{{M}_{ij}} $ .The determinant of any $ 3\times 3 $ matrix is given by $ ={{a}_{11}}{{C}_{11}}+{{a}_{12}}{{C}_{12}}+{{a}_{13}}{{C}_{13}}. $
Complete step-by-step answer:
Let us get started by expanding the determinant
$ \left| \begin{matrix}
\cos 2x & {{\sin }^{2}}x & \cos 4x \\
{{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\
\cos 4x & {{\cos }^{2}}x & \cos 2x \\
\end{matrix} \right|=\cos 2x\left( {{\cos }^{2}}2x-{{\cos }^{4}}x \right)-{{\sin }^{2}}x\left( \sin {{x}^{2}}\cos 2x-{{\cos }^{2}}x\cos 4x \right)+\cos 4x\left( {{\sin }^{2}}x{{\cos }^{2}}x-\cos 2x\cos 4x \right) $ $ \Rightarrow {{\cos }^{3}}2x-\cos 2x{{\cos }^{4}}x-{{\sin }^{4}}x\cos 2x+{{\sin }^{2}}x{{\cos }^{2}}x\cos 4x+\cos 4x{{\sin }^{2}}x{{\cos }^{2}}x-{{\cos }^{2}}4x\cos 2x $
By using $ \cos 2x=1-2{{\sin }^{2}}x $ identity, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+{{\sin }^{2}}x{{\cos }^{2}}x\cos 4x+\cos 4x{{\sin }^{2}}x{{\cos }^{2}}x- \\
& {{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ {{\cos }^{2}}x=1-{{\sin }^{2}}x $ identity, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x+ \\
& \cos 4x{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)-{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
Adding up similar terms, we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\cos }^{4}}x-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x \\
& -{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ {{\cos }^{4}}x={{\left( 1-{{\sin }^{2}}x \right)}^{2}} $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\cos 4x \\
& -{{\cos }^{2}}4x\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By using $ \cos 4x=2\left( 1-2{{\sin }^{2}}x \right)-1 $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\left( 2\left( 1-2{{\sin }^{2}}x \right)-1 \right) \\
& -{{\left( 2\left( 1-2{{\sin }^{2}}x \right)-1 \right)}^{2}}\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
By simplifying $ 2\left( 1-2{{\sin }^{2}}x \right)-1=1-4{{\sin }^{2}}x $ , we will get
$ \begin{align}
& \Rightarrow {{\left( 1-2{{\sin }^{2}}x \right)}^{3}}-\left( 1-2{{\sin }^{2}}x \right){{\left( 1-{{\sin }^{2}}x \right)}^{2}}-{{\sin }^{4}}x\left( 1-2{{\sin }^{2}}x \right)+2{{\sin }^{2}}x\left( 1-{{\sin }^{2}}x \right)\left( 1-4{{\sin }^{2}}x \right) \\
& -{{\left( 1-4{{\sin }^{2}}x \right)}^{2}}\left( 1-2{{\sin }^{2}}x \right) \\
\end{align} $
Here if we observe that now we have all terms as the powers of $ \sin x $ now we need to find the value of the constant term in the expansion for that if we assume $ x=0 $ then all other terms containing the powers of $ \sin x $ will become zero.
Let us do that
We know that $ \sin 0=0 $ so by substituting that we will get
$ \begin{align}
& \Rightarrow {{\left( 1-0 \right)}^{3}}-\left( 1-0 \right){{\left( 1-0 \right)}^{2}}-0\left( 1-0 \right)+2.0\left( 1-0 \right)\left( 1-0 \right)-{{\left( 1-0 \right)}^{2}}\left( 1-0 \right) \\
& \Rightarrow 1-1-1 \\
& \Rightarrow -1 \\
\end{align} $
Here we need a negative of the constant term of the expansion of the determinant that is 1.
So, the correct answer is “Option A”.
Note: We can also answer this question in other way as it is given that the determinant is expanded in the powers of $ \sin x $ we can assume that expansion to be
$ \left| \begin{matrix}
\cos 2x & {{\sin }^{2}}x & \cos 4x \\
{{\sin }^{2}}x & \cos 2x & {{\cos }^{2}}x \\
\cos 4x & {{\cos }^{2}}x & \cos 2x \\
\end{matrix} \right|={{a}_{0}}+{{a}_{1}}\sin x+{{a}_{2}}{{\sin }^{2}}x+..........and\text{ so on} $
Here if we observe this now we have all terms as the powers of $ \sin x $ Now we need to find the value of the constant term in the expansion for that if we assume $ x=0 $ then all other terms containing the powers of $ \sin x $ will become zero. Let us apply the value of $ x $ in the determinant.
$ \left| \begin{matrix}
\cos 0 & {{\sin }^{2}}0 & \cos 0 \\
{{\sin }^{2}}0 & \cos 0 & {{\cos }^{2}}0 \\
\cos 0 & {{\cos }^{2}}0 & \cos 0 \\
\end{matrix} \right|={{a}_{0}} $
Since we know that $ \sin 0=0 $ and $ \cos 0=1 $ we will have
$ \left| \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{matrix} \right|={{a}_{0}} $
By expanding the above determinant we will have
$ \begin{align}
& \left| \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{matrix} \right|={{a}_{0}} \\
& \Rightarrow 1\left( 1-1 \right)-0\left( 0-1 \right)+1\left( 0-1 \right)={{a}_{0}} \\
& \Rightarrow -1={{a}_{0}} \\
\end{align} $
As we need the negative of the constant term that is negative of $ {{a}_{0}} $ that is 1.
Hence we end up with a conclusion saying that option (A) is correct.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

