
If the coefficients of $ {\text{}}{{\text{r}}^{{\text{th}}}} $ , $ {{\text{(r + 1)}}^{{\text{th}}}} $ and $ {{\text{(r + 2)}}^{{\text{th}}}} $ terms in the binomial expansion of $ {\left( {1 + x} \right)^n} $ are in A.P., then show that $ {n^2} - (4r + 1)n + 4{r^2} - 2 = 0 $ .
Answer
574.8k+ views
Hint: Write down the general form of $ {\text{}}{{\text{r}}^{{\text{th}}}} $ term of binomial expansion of $ {\left( {1 + x} \right)^n} $. For a set of values in arithmetic progression, the sum of the first and third term in the set is equal to twice of the second term.
Formula used:
$\Rightarrow$ The $ {n^{th}} $ term of the binomial expansion of $ {(1 + x)^n} $ is: $ {}^n{C_r}{x^r} $ .
$\Rightarrow$ For three terms $ {a_n},{a_{n + 1}},{a_{n + 2}} $ in arithmetic progression, $ 2{a_{n + 1}} = {a_n} + {a_{n + 2}} $ .
$\Rightarrow$ $ {}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} $
Complete step by step solution:
We’ve been given that the $ {\text{}}{{\text{r}}^{{\text{th}}}} $ , $ {{\text{(r + 1)}}^{{\text{th}}}} $ and $ {{\text{(r + 2)}}^{{\text{th}}}} $ terms of the binomial expression of $ {\left( {1 + x} \right)^n} $ are in arithmetic progression. Let’s start by finding these terms in the binomial expression. We know that the $ {\text{}}{{\text{r}}^{{\text{th}}}} $ term of the binomial expression can be written as:
$ \Rightarrow {\text{}}{{\text{r}}^{{\text{th}}}} $ term: $ {}^n{C_{r - 1}}{(1)^{n - r + 1}}{x^{r - 1}} = {}^n{C_{r - 1}}{x^{r + 1}} $
Similarly, we can write
$ \Rightarrow {{\text{(r + 1)}}^{{\text{th}}}} $ term $ = {}^n{C_r}{x^r} $ and
$ \Rightarrow {{\text{(r + 2)}}^{{\text{th}}}} $ term $ = {}^n{C_{r + 1}}{x^{r + 1}} $ .
Now since the coefficients of these three terms are in arithmetic progression, we can write
$ \Rightarrow 2{}^n{C_r} = {}^n{C_{r - 1}} + {}^n{C_{r + 1}} $
Dividing both sides by $ {}^n{C_r} $ , we get
$ \Rightarrow 2 = \dfrac{{{}^n{C_{r - 1}}}}{{{}^n{C_r}}} + \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}} $
Since $ {}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} $ , we can write
$ \Rightarrow 2 = \dfrac{{\dfrac{{n!}}{{(r - 1)!(n - (r - 1))!}}}}{{\dfrac{{n!}}{{r!(n - r)!}}}} + \dfrac{{\dfrac{{n!}}{{(r + 1)!(n - (r + 1))!}}}}{{\dfrac{{n!}}{{r!(n - r)!}}}} $
Using the property that $ r! = r \times (r - 1)! $ , we can simplify the above expression as
$ \Rightarrow 2 = \dfrac{r}{{n - r + 1}} + \dfrac{{n - r}}{{r + 1}} $
Taking the LCM of the two terms on the right hand side of the equation, we get:
$ \Rightarrow 2 = \dfrac{{r(r + 1) + (n - r)(n - r + 1)}}{{(n - r + 1)(r + 1)}} $
On simplifying the numerator, we get:
$ \Rightarrow 2 = \dfrac{{({r^2} + r) + ({n^2} - 2nr + {r^2} + n - r)}}{{(n - r + 1)(r + 1)}} $
On multiplying both sides by $ (n - r + 1)(r + 1) $ , we get
$ \Rightarrow 2(n - r + 1)(r + 1) = ({r^2} + r) + ({n^2} - 2nr + {r^2} + n - r) $
which can be further simplified to
$ \Rightarrow {n^2} - (4r + 1)n + 4{r^2} - 2 = 0 $
Hence, we have proved that if the coefficients of $ {\text{}}{{\text{r}}^{{\text{th}}}} $ , $ {{\text{(r + 1)}}^{{\text{th}}}} $ and $ {{\text{(r + 2)}}^{{\text{th}}}} $ terms in the binomial expansion of $ {\left( {1 + x} \right)^n} $ are in A.P. , $ {n^2} - (4r + 1)n + 4{r^2} - 2 = 0 $ .
Note:
Since the terms of the binomial expansion are in A.P., we must realize to use the property $ 2{a_{n + 1}} = {a_n} + {a_{n + 2}} $ which helps us in relating the coefficients of the binomial expansion. Certain identities of permutation/combination operations can also help in simplifying the solution for e.g. $ \dfrac{{{}^n{C_{r - 1}}}}{{{}^n{C_r}}} = \dfrac{r}{{n - r + 1}} $ .
Formula used:
$\Rightarrow$ The $ {n^{th}} $ term of the binomial expansion of $ {(1 + x)^n} $ is: $ {}^n{C_r}{x^r} $ .
$\Rightarrow$ For three terms $ {a_n},{a_{n + 1}},{a_{n + 2}} $ in arithmetic progression, $ 2{a_{n + 1}} = {a_n} + {a_{n + 2}} $ .
$\Rightarrow$ $ {}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} $
Complete step by step solution:
We’ve been given that the $ {\text{}}{{\text{r}}^{{\text{th}}}} $ , $ {{\text{(r + 1)}}^{{\text{th}}}} $ and $ {{\text{(r + 2)}}^{{\text{th}}}} $ terms of the binomial expression of $ {\left( {1 + x} \right)^n} $ are in arithmetic progression. Let’s start by finding these terms in the binomial expression. We know that the $ {\text{}}{{\text{r}}^{{\text{th}}}} $ term of the binomial expression can be written as:
$ \Rightarrow {\text{}}{{\text{r}}^{{\text{th}}}} $ term: $ {}^n{C_{r - 1}}{(1)^{n - r + 1}}{x^{r - 1}} = {}^n{C_{r - 1}}{x^{r + 1}} $
Similarly, we can write
$ \Rightarrow {{\text{(r + 1)}}^{{\text{th}}}} $ term $ = {}^n{C_r}{x^r} $ and
$ \Rightarrow {{\text{(r + 2)}}^{{\text{th}}}} $ term $ = {}^n{C_{r + 1}}{x^{r + 1}} $ .
Now since the coefficients of these three terms are in arithmetic progression, we can write
$ \Rightarrow 2{}^n{C_r} = {}^n{C_{r - 1}} + {}^n{C_{r + 1}} $
Dividing both sides by $ {}^n{C_r} $ , we get
$ \Rightarrow 2 = \dfrac{{{}^n{C_{r - 1}}}}{{{}^n{C_r}}} + \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}} $
Since $ {}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} $ , we can write
$ \Rightarrow 2 = \dfrac{{\dfrac{{n!}}{{(r - 1)!(n - (r - 1))!}}}}{{\dfrac{{n!}}{{r!(n - r)!}}}} + \dfrac{{\dfrac{{n!}}{{(r + 1)!(n - (r + 1))!}}}}{{\dfrac{{n!}}{{r!(n - r)!}}}} $
Using the property that $ r! = r \times (r - 1)! $ , we can simplify the above expression as
$ \Rightarrow 2 = \dfrac{r}{{n - r + 1}} + \dfrac{{n - r}}{{r + 1}} $
Taking the LCM of the two terms on the right hand side of the equation, we get:
$ \Rightarrow 2 = \dfrac{{r(r + 1) + (n - r)(n - r + 1)}}{{(n - r + 1)(r + 1)}} $
On simplifying the numerator, we get:
$ \Rightarrow 2 = \dfrac{{({r^2} + r) + ({n^2} - 2nr + {r^2} + n - r)}}{{(n - r + 1)(r + 1)}} $
On multiplying both sides by $ (n - r + 1)(r + 1) $ , we get
$ \Rightarrow 2(n - r + 1)(r + 1) = ({r^2} + r) + ({n^2} - 2nr + {r^2} + n - r) $
which can be further simplified to
$ \Rightarrow {n^2} - (4r + 1)n + 4{r^2} - 2 = 0 $
Hence, we have proved that if the coefficients of $ {\text{}}{{\text{r}}^{{\text{th}}}} $ , $ {{\text{(r + 1)}}^{{\text{th}}}} $ and $ {{\text{(r + 2)}}^{{\text{th}}}} $ terms in the binomial expansion of $ {\left( {1 + x} \right)^n} $ are in A.P. , $ {n^2} - (4r + 1)n + 4{r^2} - 2 = 0 $ .
Note:
Since the terms of the binomial expansion are in A.P., we must realize to use the property $ 2{a_{n + 1}} = {a_n} + {a_{n + 2}} $ which helps us in relating the coefficients of the binomial expansion. Certain identities of permutation/combination operations can also help in simplifying the solution for e.g. $ \dfrac{{{}^n{C_{r - 1}}}}{{{}^n{C_r}}} = \dfrac{r}{{n - r + 1}} $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

