
If tan x + tan 2x + tan 3x = 0, then x =?
$
{\text{A}}{\text{. n}}\pi {\text{ + }}\dfrac{\pi }{3} \\
{\text{B}}{\text{. n}}\pi + \dfrac{\pi }{4} \\
{\text{C}}{\text{. n}}\pi {\text{ or n}}\pi \pm \dfrac{\pi }{3} \\
{\text{D}}{\text{. 2n}}\pi \\
$
Answer
575.7k+ views
Hint: To find the value of x, we rearrange the given equation and convert it in terms of sin and cos functions. Then we apply the formulae of sin (a + b) and cos (a + b) and simplify.
Complete step-by-step answer:
Given data, tan x + tan 2x + tan 3x = 0
⟹tan x + tan 2x = -tan 3x
$ \Rightarrow \dfrac{{{\text{sin x}}}}{{{\text{cos x}}}} + \dfrac{{{\text{sin 2x}}}}{{{\text{cos 2x}}}} = - \dfrac{{{\text{sin 3x}}}}{{{\text{cos 3x}}}}$
$ \Rightarrow \dfrac{{{\text{sin x cos 2x + cos x sin 2x}}}}{{{\text{cos x cos 2x}}}} = - \dfrac{{{\text{sin 3x}}}}{{{\text{cos 3x}}}}$
We know the function Sin (a + b) is given as (Sin a Cos b + Cos a Sin b).
Comparing with the above equation, here a = x and b = 2x.
$ \Rightarrow {\text{sin }}\left( {{\text{2x + x}}} \right){\text{ cos 3x = - cos x cos 2x sin 3x}}$
$ \Rightarrow {\text{sin 3x cos 3x + cos x cos 2x sin 3x = 0}}$
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos 3x + cos x cos 2x}}} \right){\text{ = 0}}$
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos }}\left( {{\text{2x + x}}} \right){\text{ + cos x cos 2x}}} \right){\text{ = 0}}$
We know the function Cos (a + b) is given as (Cos a Cos b - Sin a Sin b).
Comparing with the above equation, here a = x and b = 2x
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos x cos 2x - sin x sin 2x + cos x cos 2x}}} \right) = {\text{ 0}}$
$ \Rightarrow {\text{ - sin 3x sin x sin 2x = 0}}$
$ \Rightarrow {\text{sin x sin 2x sin 3x = 0}}$
This means either of the terms is zero.
Either, sin 3x = 0
i.e., 3x = nπ, n ε I
i.e., x =$\dfrac{{{\text{n}}\pi }}{3}$, n ε I
Or, sin 2x = 0
i.e., 2x = nπ, n ε I
i.e., x =$\dfrac{{{\text{n}}\pi }}{2}$, n ε I
Or, sin x = 0
i.e., nπ, n ε I
But putting x =$\dfrac{{{\text{n}}\pi }}{2}$, does not satisfy the equation. (E.g. Putting x =$\dfrac{{{\text{n}}\pi }}{2}$, tan$\dfrac{\pi }{2}$= undefined)
Hence the solution set is x = nπ and x =$\dfrac{{{\text{n}}\pi }}{3}$
Hence Option C is the correct answer.
Note: In order to solve this type of problems the key is to have adequate knowledge in trigonometric formulae such as Sin (a + b) and Cos (a – b) and tan θ =$\dfrac{{{\text{Sin }}\theta }}{{{\text{Cos }}\theta }}$. It is important to identify that if${\text{sin x sin 2x sin 3x = 0}}$, then either of them is zero. Also Sin π = 0. And the letter I represents the set of integers here.
Complete step-by-step answer:
Given data, tan x + tan 2x + tan 3x = 0
⟹tan x + tan 2x = -tan 3x
$ \Rightarrow \dfrac{{{\text{sin x}}}}{{{\text{cos x}}}} + \dfrac{{{\text{sin 2x}}}}{{{\text{cos 2x}}}} = - \dfrac{{{\text{sin 3x}}}}{{{\text{cos 3x}}}}$
$ \Rightarrow \dfrac{{{\text{sin x cos 2x + cos x sin 2x}}}}{{{\text{cos x cos 2x}}}} = - \dfrac{{{\text{sin 3x}}}}{{{\text{cos 3x}}}}$
We know the function Sin (a + b) is given as (Sin a Cos b + Cos a Sin b).
Comparing with the above equation, here a = x and b = 2x.
$ \Rightarrow {\text{sin }}\left( {{\text{2x + x}}} \right){\text{ cos 3x = - cos x cos 2x sin 3x}}$
$ \Rightarrow {\text{sin 3x cos 3x + cos x cos 2x sin 3x = 0}}$
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos 3x + cos x cos 2x}}} \right){\text{ = 0}}$
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos }}\left( {{\text{2x + x}}} \right){\text{ + cos x cos 2x}}} \right){\text{ = 0}}$
We know the function Cos (a + b) is given as (Cos a Cos b - Sin a Sin b).
Comparing with the above equation, here a = x and b = 2x
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos x cos 2x - sin x sin 2x + cos x cos 2x}}} \right) = {\text{ 0}}$
$ \Rightarrow {\text{ - sin 3x sin x sin 2x = 0}}$
$ \Rightarrow {\text{sin x sin 2x sin 3x = 0}}$
This means either of the terms is zero.
Either, sin 3x = 0
i.e., 3x = nπ, n ε I
i.e., x =$\dfrac{{{\text{n}}\pi }}{3}$, n ε I
Or, sin 2x = 0
i.e., 2x = nπ, n ε I
i.e., x =$\dfrac{{{\text{n}}\pi }}{2}$, n ε I
Or, sin x = 0
i.e., nπ, n ε I
But putting x =$\dfrac{{{\text{n}}\pi }}{2}$, does not satisfy the equation. (E.g. Putting x =$\dfrac{{{\text{n}}\pi }}{2}$, tan$\dfrac{\pi }{2}$= undefined)
Hence the solution set is x = nπ and x =$\dfrac{{{\text{n}}\pi }}{3}$
Hence Option C is the correct answer.
Note: In order to solve this type of problems the key is to have adequate knowledge in trigonometric formulae such as Sin (a + b) and Cos (a – b) and tan θ =$\dfrac{{{\text{Sin }}\theta }}{{{\text{Cos }}\theta }}$. It is important to identify that if${\text{sin x sin 2x sin 3x = 0}}$, then either of them is zero. Also Sin π = 0. And the letter I represents the set of integers here.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

