
If tan x + tan 2x + tan 3x = 0, then x =?
$
{\text{A}}{\text{. n}}\pi {\text{ + }}\dfrac{\pi }{3} \\
{\text{B}}{\text{. n}}\pi + \dfrac{\pi }{4} \\
{\text{C}}{\text{. n}}\pi {\text{ or n}}\pi \pm \dfrac{\pi }{3} \\
{\text{D}}{\text{. 2n}}\pi \\
$
Answer
507.6k+ views
Hint: To find the value of x, we rearrange the given equation and convert it in terms of sin and cos functions. Then we apply the formulae of sin (a + b) and cos (a + b) and simplify.
Complete step-by-step answer:
Given data, tan x + tan 2x + tan 3x = 0
⟹tan x + tan 2x = -tan 3x
$ \Rightarrow \dfrac{{{\text{sin x}}}}{{{\text{cos x}}}} + \dfrac{{{\text{sin 2x}}}}{{{\text{cos 2x}}}} = - \dfrac{{{\text{sin 3x}}}}{{{\text{cos 3x}}}}$
$ \Rightarrow \dfrac{{{\text{sin x cos 2x + cos x sin 2x}}}}{{{\text{cos x cos 2x}}}} = - \dfrac{{{\text{sin 3x}}}}{{{\text{cos 3x}}}}$
We know the function Sin (a + b) is given as (Sin a Cos b + Cos a Sin b).
Comparing with the above equation, here a = x and b = 2x.
$ \Rightarrow {\text{sin }}\left( {{\text{2x + x}}} \right){\text{ cos 3x = - cos x cos 2x sin 3x}}$
$ \Rightarrow {\text{sin 3x cos 3x + cos x cos 2x sin 3x = 0}}$
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos 3x + cos x cos 2x}}} \right){\text{ = 0}}$
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos }}\left( {{\text{2x + x}}} \right){\text{ + cos x cos 2x}}} \right){\text{ = 0}}$
We know the function Cos (a + b) is given as (Cos a Cos b - Sin a Sin b).
Comparing with the above equation, here a = x and b = 2x
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos x cos 2x - sin x sin 2x + cos x cos 2x}}} \right) = {\text{ 0}}$
$ \Rightarrow {\text{ - sin 3x sin x sin 2x = 0}}$
$ \Rightarrow {\text{sin x sin 2x sin 3x = 0}}$
This means either of the terms is zero.
Either, sin 3x = 0
i.e., 3x = nπ, n ε I
i.e., x =$\dfrac{{{\text{n}}\pi }}{3}$, n ε I
Or, sin 2x = 0
i.e., 2x = nπ, n ε I
i.e., x =$\dfrac{{{\text{n}}\pi }}{2}$, n ε I
Or, sin x = 0
i.e., nπ, n ε I
But putting x =$\dfrac{{{\text{n}}\pi }}{2}$, does not satisfy the equation. (E.g. Putting x =$\dfrac{{{\text{n}}\pi }}{2}$, tan$\dfrac{\pi }{2}$= undefined)
Hence the solution set is x = nπ and x =$\dfrac{{{\text{n}}\pi }}{3}$
Hence Option C is the correct answer.
Note: In order to solve this type of problems the key is to have adequate knowledge in trigonometric formulae such as Sin (a + b) and Cos (a – b) and tan θ =$\dfrac{{{\text{Sin }}\theta }}{{{\text{Cos }}\theta }}$. It is important to identify that if${\text{sin x sin 2x sin 3x = 0}}$, then either of them is zero. Also Sin π = 0. And the letter I represents the set of integers here.
Complete step-by-step answer:
Given data, tan x + tan 2x + tan 3x = 0
⟹tan x + tan 2x = -tan 3x
$ \Rightarrow \dfrac{{{\text{sin x}}}}{{{\text{cos x}}}} + \dfrac{{{\text{sin 2x}}}}{{{\text{cos 2x}}}} = - \dfrac{{{\text{sin 3x}}}}{{{\text{cos 3x}}}}$
$ \Rightarrow \dfrac{{{\text{sin x cos 2x + cos x sin 2x}}}}{{{\text{cos x cos 2x}}}} = - \dfrac{{{\text{sin 3x}}}}{{{\text{cos 3x}}}}$
We know the function Sin (a + b) is given as (Sin a Cos b + Cos a Sin b).
Comparing with the above equation, here a = x and b = 2x.
$ \Rightarrow {\text{sin }}\left( {{\text{2x + x}}} \right){\text{ cos 3x = - cos x cos 2x sin 3x}}$
$ \Rightarrow {\text{sin 3x cos 3x + cos x cos 2x sin 3x = 0}}$
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos 3x + cos x cos 2x}}} \right){\text{ = 0}}$
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos }}\left( {{\text{2x + x}}} \right){\text{ + cos x cos 2x}}} \right){\text{ = 0}}$
We know the function Cos (a + b) is given as (Cos a Cos b - Sin a Sin b).
Comparing with the above equation, here a = x and b = 2x
$ \Rightarrow {\text{sin 3x }}\left( {{\text{cos x cos 2x - sin x sin 2x + cos x cos 2x}}} \right) = {\text{ 0}}$
$ \Rightarrow {\text{ - sin 3x sin x sin 2x = 0}}$
$ \Rightarrow {\text{sin x sin 2x sin 3x = 0}}$
This means either of the terms is zero.
Either, sin 3x = 0
i.e., 3x = nπ, n ε I
i.e., x =$\dfrac{{{\text{n}}\pi }}{3}$, n ε I
Or, sin 2x = 0
i.e., 2x = nπ, n ε I
i.e., x =$\dfrac{{{\text{n}}\pi }}{2}$, n ε I
Or, sin x = 0
i.e., nπ, n ε I
But putting x =$\dfrac{{{\text{n}}\pi }}{2}$, does not satisfy the equation. (E.g. Putting x =$\dfrac{{{\text{n}}\pi }}{2}$, tan$\dfrac{\pi }{2}$= undefined)
Hence the solution set is x = nπ and x =$\dfrac{{{\text{n}}\pi }}{3}$
Hence Option C is the correct answer.
Note: In order to solve this type of problems the key is to have adequate knowledge in trigonometric formulae such as Sin (a + b) and Cos (a – b) and tan θ =$\dfrac{{{\text{Sin }}\theta }}{{{\text{Cos }}\theta }}$. It is important to identify that if${\text{sin x sin 2x sin 3x = 0}}$, then either of them is zero. Also Sin π = 0. And the letter I represents the set of integers here.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
