
If \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4},xy<1,\] then write the value of x + y + xy.
Answer
511.8k+ views
Hint: We are given that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}\] and we are looking for the value of x + y + xy. We will start by using the sum of the inverse trigonometric functions, that is, we use \[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] which simplifies the terms and we get \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}.\] Now, we will apply tan on both the sides and we get \[\dfrac{x+y}{1-xy}=1\] as \[\tan \left( {{\tan }^{-1}}\theta \right)=\theta \] and \[\tan \left( \dfrac{\pi }{4} \right)\] is 1. We will simplify further to get our solution.
Complete step by step answer:
We are given that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}\] and we are asked to find the value of x + y + xy. First of all, we will simplify the left side of the equality given to us as
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}.......\left( i \right)\]
We know that the formula for the sum of the inverse trigonometric functions. We know that,
\[{{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)\]
So, using this we will use for \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\] and we will get that
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]
Putting this in equation (i), we will get,
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}\]
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)=\dfrac{\pi }{4}\]
Taking tan on both the sides, we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) \right]=\tan \dfrac{\pi }{4}\]
As, \[\tan \left( {{\tan }^{-1}}\theta \right)=\theta ,\] so we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) \right]=\tan \dfrac{\pi }{4}\]
\[\Rightarrow \left( \dfrac{x+y}{1-xy} \right)=\tan \dfrac{\pi }{4}\]
Now, as \[\tan \dfrac{\pi }{4}=1,\] so we have,
\[\dfrac{x+y}{1-xy}=1\]
Now, simplifying further, we get,
\[\Rightarrow x+y=1-xy\]
Taking xy to the LHS, we get,
\[\Rightarrow x+y+xy=1\]
Hence proved.
Note: Students need to remember that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\ne {{\tan }^{-1}}\left( x+y \right).\] We will use the right formula to achieve the right solution. Also, from \[{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)=\dfrac{\pi }{4}\] We can just shift the tan to the other side and we will get,
\[\dfrac{x+y}{1-xy}=\tan \dfrac{\pi }{4}\]
As, \[\tan \dfrac{\pi }{4}=1,\] so we get,
\[\Rightarrow \dfrac{x+y}{1-xy}=1\]
Simplifying further, we will get,
\[\Rightarrow x+y+xy=1\].
Complete step by step answer:
We are given that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}\] and we are asked to find the value of x + y + xy. First of all, we will simplify the left side of the equality given to us as
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}.......\left( i \right)\]
We know that the formula for the sum of the inverse trigonometric functions. We know that,
\[{{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)\]
So, using this we will use for \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\] and we will get that
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]
Putting this in equation (i), we will get,
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}\]
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)=\dfrac{\pi }{4}\]
Taking tan on both the sides, we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) \right]=\tan \dfrac{\pi }{4}\]
As, \[\tan \left( {{\tan }^{-1}}\theta \right)=\theta ,\] so we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) \right]=\tan \dfrac{\pi }{4}\]
\[\Rightarrow \left( \dfrac{x+y}{1-xy} \right)=\tan \dfrac{\pi }{4}\]
Now, as \[\tan \dfrac{\pi }{4}=1,\] so we have,
\[\dfrac{x+y}{1-xy}=1\]
Now, simplifying further, we get,
\[\Rightarrow x+y=1-xy\]
Taking xy to the LHS, we get,
\[\Rightarrow x+y+xy=1\]
Hence proved.
Note: Students need to remember that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\ne {{\tan }^{-1}}\left( x+y \right).\] We will use the right formula to achieve the right solution. Also, from \[{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)=\dfrac{\pi }{4}\] We can just shift the tan to the other side and we will get,
\[\dfrac{x+y}{1-xy}=\tan \dfrac{\pi }{4}\]
As, \[\tan \dfrac{\pi }{4}=1,\] so we get,
\[\Rightarrow \dfrac{x+y}{1-xy}=1\]
Simplifying further, we will get,
\[\Rightarrow x+y+xy=1\].
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
