
If \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4},xy<1,\] then write the value of x + y + xy.
Answer
591.3k+ views
Hint: We are given that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}\] and we are looking for the value of x + y + xy. We will start by using the sum of the inverse trigonometric functions, that is, we use \[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] which simplifies the terms and we get \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}.\] Now, we will apply tan on both the sides and we get \[\dfrac{x+y}{1-xy}=1\] as \[\tan \left( {{\tan }^{-1}}\theta \right)=\theta \] and \[\tan \left( \dfrac{\pi }{4} \right)\] is 1. We will simplify further to get our solution.
Complete step by step answer:
We are given that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}\] and we are asked to find the value of x + y + xy. First of all, we will simplify the left side of the equality given to us as
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}.......\left( i \right)\]
We know that the formula for the sum of the inverse trigonometric functions. We know that,
\[{{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)\]
So, using this we will use for \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\] and we will get that
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]
Putting this in equation (i), we will get,
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}\]
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)=\dfrac{\pi }{4}\]
Taking tan on both the sides, we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) \right]=\tan \dfrac{\pi }{4}\]
As, \[\tan \left( {{\tan }^{-1}}\theta \right)=\theta ,\] so we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) \right]=\tan \dfrac{\pi }{4}\]
\[\Rightarrow \left( \dfrac{x+y}{1-xy} \right)=\tan \dfrac{\pi }{4}\]
Now, as \[\tan \dfrac{\pi }{4}=1,\] so we have,
\[\dfrac{x+y}{1-xy}=1\]
Now, simplifying further, we get,
\[\Rightarrow x+y=1-xy\]
Taking xy to the LHS, we get,
\[\Rightarrow x+y+xy=1\]
Hence proved.
Note: Students need to remember that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\ne {{\tan }^{-1}}\left( x+y \right).\] We will use the right formula to achieve the right solution. Also, from \[{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)=\dfrac{\pi }{4}\] We can just shift the tan to the other side and we will get,
\[\dfrac{x+y}{1-xy}=\tan \dfrac{\pi }{4}\]
As, \[\tan \dfrac{\pi }{4}=1,\] so we get,
\[\Rightarrow \dfrac{x+y}{1-xy}=1\]
Simplifying further, we will get,
\[\Rightarrow x+y+xy=1\].
Complete step by step answer:
We are given that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}\] and we are asked to find the value of x + y + xy. First of all, we will simplify the left side of the equality given to us as
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}.......\left( i \right)\]
We know that the formula for the sum of the inverse trigonometric functions. We know that,
\[{{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right)\]
So, using this we will use for \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\] and we will get that
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]
Putting this in equation (i), we will get,
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\dfrac{\pi }{4}\]
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)=\dfrac{\pi }{4}\]
Taking tan on both the sides, we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) \right]=\tan \dfrac{\pi }{4}\]
As, \[\tan \left( {{\tan }^{-1}}\theta \right)=\theta ,\] so we get,
\[\Rightarrow \tan \left[ {{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) \right]=\tan \dfrac{\pi }{4}\]
\[\Rightarrow \left( \dfrac{x+y}{1-xy} \right)=\tan \dfrac{\pi }{4}\]
Now, as \[\tan \dfrac{\pi }{4}=1,\] so we have,
\[\dfrac{x+y}{1-xy}=1\]
Now, simplifying further, we get,
\[\Rightarrow x+y=1-xy\]
Taking xy to the LHS, we get,
\[\Rightarrow x+y+xy=1\]
Hence proved.
Note: Students need to remember that \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\ne {{\tan }^{-1}}\left( x+y \right).\] We will use the right formula to achieve the right solution. Also, from \[{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)=\dfrac{\pi }{4}\] We can just shift the tan to the other side and we will get,
\[\dfrac{x+y}{1-xy}=\tan \dfrac{\pi }{4}\]
As, \[\tan \dfrac{\pi }{4}=1,\] so we get,
\[\Rightarrow \dfrac{x+y}{1-xy}=1\]
Simplifying further, we will get,
\[\Rightarrow x+y+xy=1\].
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

