
If st =1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is
(A) $\dfrac{{\left( {{{\rm{t}}^2} + 1} \right)}}{{2{{\rm{t}}^3}}}$
(B) $\dfrac{{{\rm{a}}{{\left( {{{\rm{t}}^2} + 1} \right)}^2}}}{{2{{\rm{t}}^3}}}$
(C) $\dfrac{{{\rm{a}}{{\left( {{{\rm{t}}^2} + 1} \right)}^2}}}{{{{\rm{t}}^3}}}$
(D) $\dfrac{{{\rm{a}}{{\left( {{{\rm{t}}^2} + 2} \right)}^3}}}{{{{\rm{t}}^3}}}$
Answer
524.1k+ views
Hint:
We know that equation of a tangent of a parabola at ${\rm{p}}:{\rm{y}} = {\rm{x}} + {\rm{a}}{{\rm{t}}^2}$. Also, equation of normal of parabola at point ${\rm{s}}:{\rm{y}} + \dfrac{{\rm{x}}}{{\rm{t}}} = \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$. Here, we have 2 equations and one unknown which is y. so we can easily get it’s value.
Complete step by step solution:
Given
st = 1
According to the question.
We know that
Equation of tangent at P to parabola;
${\rm{ty}} = {\rm{x}} + {\rm{a}}{{\rm{t}}^2}$
$ \Rightarrow {\rm{y}} = \dfrac{{\rm{x}}}{{\rm{t}}} + \dfrac{{{\rm{a}}{{\rm{t}}^2}}}{{\rm{t}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{\rm{x}}}{{\rm{t}}} + {\rm{at}}$ (2)
And,
Also, we know that normal equation at S to the parabola.
then, equation of normal, ${\rm{y}} + \dfrac{{\rm{x}}}{{\rm{t}}} = \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$ (1)
From equation 1 and 2; we get
$2{\rm{y}} = {\rm{at}} + \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{{\rm{at}}}}{2} + \dfrac{{2{\rm{a}}}}{{2{\rm{t}}}} + \dfrac{{\rm{a}}}{{2{{\rm{t}}^3}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{{\rm{at}}}}{2} + \dfrac{{\rm{a}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{2{{\rm{t}}^3}}}$
on, adding, we get
${\rm{y}} = \dfrac{{{\rm{a}}{{\rm{t}}^4} + 2{\rm{a}}{{\rm{t}}^2} + {\rm{a}}}}{{2{{\rm{t}}^3}}}$
Hence, the ordinate is $\dfrac{{{\rm{a}}\left( {{{\rm{t}}^2} + 1} \right)}}{{2{{\rm{t}}^3}}}$
Note:
The line perpendicular to the tangent of the parabola at the point of contact is called the normal. And the line touches the parabola at one point, then the line is called tangent. Another way to solve this problem is to find tangent and normals from our classical method which is by differentiating.
We know that equation of a tangent of a parabola at ${\rm{p}}:{\rm{y}} = {\rm{x}} + {\rm{a}}{{\rm{t}}^2}$. Also, equation of normal of parabola at point ${\rm{s}}:{\rm{y}} + \dfrac{{\rm{x}}}{{\rm{t}}} = \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$. Here, we have 2 equations and one unknown which is y. so we can easily get it’s value.
Complete step by step solution:
Given
st = 1
According to the question.
We know that
Equation of tangent at P to parabola;
${\rm{ty}} = {\rm{x}} + {\rm{a}}{{\rm{t}}^2}$
$ \Rightarrow {\rm{y}} = \dfrac{{\rm{x}}}{{\rm{t}}} + \dfrac{{{\rm{a}}{{\rm{t}}^2}}}{{\rm{t}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{\rm{x}}}{{\rm{t}}} + {\rm{at}}$ (2)
And,
Also, we know that normal equation at S to the parabola.
then, equation of normal, ${\rm{y}} + \dfrac{{\rm{x}}}{{\rm{t}}} = \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$ (1)
From equation 1 and 2; we get
$2{\rm{y}} = {\rm{at}} + \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{{\rm{at}}}}{2} + \dfrac{{2{\rm{a}}}}{{2{\rm{t}}}} + \dfrac{{\rm{a}}}{{2{{\rm{t}}^3}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{{\rm{at}}}}{2} + \dfrac{{\rm{a}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{2{{\rm{t}}^3}}}$
on, adding, we get
${\rm{y}} = \dfrac{{{\rm{a}}{{\rm{t}}^4} + 2{\rm{a}}{{\rm{t}}^2} + {\rm{a}}}}{{2{{\rm{t}}^3}}}$
Hence, the ordinate is $\dfrac{{{\rm{a}}\left( {{{\rm{t}}^2} + 1} \right)}}{{2{{\rm{t}}^3}}}$
Note:
The line perpendicular to the tangent of the parabola at the point of contact is called the normal. And the line touches the parabola at one point, then the line is called tangent. Another way to solve this problem is to find tangent and normals from our classical method which is by differentiating.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
