
If st =1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is
(A) $\dfrac{{\left( {{{\rm{t}}^2} + 1} \right)}}{{2{{\rm{t}}^3}}}$
(B) $\dfrac{{{\rm{a}}{{\left( {{{\rm{t}}^2} + 1} \right)}^2}}}{{2{{\rm{t}}^3}}}$
(C) $\dfrac{{{\rm{a}}{{\left( {{{\rm{t}}^2} + 1} \right)}^2}}}{{{{\rm{t}}^3}}}$
(D) $\dfrac{{{\rm{a}}{{\left( {{{\rm{t}}^2} + 2} \right)}^3}}}{{{{\rm{t}}^3}}}$
Answer
572.1k+ views
Hint:
We know that equation of a tangent of a parabola at ${\rm{p}}:{\rm{y}} = {\rm{x}} + {\rm{a}}{{\rm{t}}^2}$. Also, equation of normal of parabola at point ${\rm{s}}:{\rm{y}} + \dfrac{{\rm{x}}}{{\rm{t}}} = \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$. Here, we have 2 equations and one unknown which is y. so we can easily get it’s value.
Complete step by step solution:
Given
st = 1
According to the question.
We know that
Equation of tangent at P to parabola;
${\rm{ty}} = {\rm{x}} + {\rm{a}}{{\rm{t}}^2}$
$ \Rightarrow {\rm{y}} = \dfrac{{\rm{x}}}{{\rm{t}}} + \dfrac{{{\rm{a}}{{\rm{t}}^2}}}{{\rm{t}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{\rm{x}}}{{\rm{t}}} + {\rm{at}}$ (2)
And,
Also, we know that normal equation at S to the parabola.
then, equation of normal, ${\rm{y}} + \dfrac{{\rm{x}}}{{\rm{t}}} = \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$ (1)
From equation 1 and 2; we get
$2{\rm{y}} = {\rm{at}} + \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{{\rm{at}}}}{2} + \dfrac{{2{\rm{a}}}}{{2{\rm{t}}}} + \dfrac{{\rm{a}}}{{2{{\rm{t}}^3}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{{\rm{at}}}}{2} + \dfrac{{\rm{a}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{2{{\rm{t}}^3}}}$
on, adding, we get
${\rm{y}} = \dfrac{{{\rm{a}}{{\rm{t}}^4} + 2{\rm{a}}{{\rm{t}}^2} + {\rm{a}}}}{{2{{\rm{t}}^3}}}$
Hence, the ordinate is $\dfrac{{{\rm{a}}\left( {{{\rm{t}}^2} + 1} \right)}}{{2{{\rm{t}}^3}}}$
Note:
The line perpendicular to the tangent of the parabola at the point of contact is called the normal. And the line touches the parabola at one point, then the line is called tangent. Another way to solve this problem is to find tangent and normals from our classical method which is by differentiating.
We know that equation of a tangent of a parabola at ${\rm{p}}:{\rm{y}} = {\rm{x}} + {\rm{a}}{{\rm{t}}^2}$. Also, equation of normal of parabola at point ${\rm{s}}:{\rm{y}} + \dfrac{{\rm{x}}}{{\rm{t}}} = \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$. Here, we have 2 equations and one unknown which is y. so we can easily get it’s value.
Complete step by step solution:
Given
st = 1
According to the question.
We know that
Equation of tangent at P to parabola;
${\rm{ty}} = {\rm{x}} + {\rm{a}}{{\rm{t}}^2}$
$ \Rightarrow {\rm{y}} = \dfrac{{\rm{x}}}{{\rm{t}}} + \dfrac{{{\rm{a}}{{\rm{t}}^2}}}{{\rm{t}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{\rm{x}}}{{\rm{t}}} + {\rm{at}}$ (2)
And,
Also, we know that normal equation at S to the parabola.
then, equation of normal, ${\rm{y}} + \dfrac{{\rm{x}}}{{\rm{t}}} = \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$ (1)
From equation 1 and 2; we get
$2{\rm{y}} = {\rm{at}} + \dfrac{{2{\rm{a}}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{{{\rm{t}}^3}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{{\rm{at}}}}{2} + \dfrac{{2{\rm{a}}}}{{2{\rm{t}}}} + \dfrac{{\rm{a}}}{{2{{\rm{t}}^3}}}$
$ \Rightarrow {\rm{y}} = \dfrac{{{\rm{at}}}}{2} + \dfrac{{\rm{a}}}{{\rm{t}}} + \dfrac{{\rm{a}}}{{2{{\rm{t}}^3}}}$
on, adding, we get
${\rm{y}} = \dfrac{{{\rm{a}}{{\rm{t}}^4} + 2{\rm{a}}{{\rm{t}}^2} + {\rm{a}}}}{{2{{\rm{t}}^3}}}$
Hence, the ordinate is $\dfrac{{{\rm{a}}\left( {{{\rm{t}}^2} + 1} \right)}}{{2{{\rm{t}}^3}}}$
Note:
The line perpendicular to the tangent of the parabola at the point of contact is called the normal. And the line touches the parabola at one point, then the line is called tangent. Another way to solve this problem is to find tangent and normals from our classical method which is by differentiating.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

