
If \[\sqrt{y}={{\cos }^{-1}}x\], then it satisfies the differential equation \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}=c\], where c is equal to,
(a)0
(b)3
(c)1
(d)2
Answer
617.7k+ views
Hint: Differentiate the expression to get \[\dfrac{dy}{dx}\]. Differentiate the expression again to get \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\]. Now simplify the expression and it changes into a differential equation in question and finds the value of c.
Complete step-by-step answer:
Given to us is the expression, \[\sqrt{y}={{\cos }^{-1}}x\].
Let us square both sides of the expression,
\[\begin{align}
& {{\left( \sqrt{y} \right)}^{2}}={{\left( {{\cos }^{-1}}x \right)}^{2}} \\
& \Rightarrow y={{\left( {{\cos }^{-1}}x \right)}^{2}} \\
\end{align}\]
Let us differentiate both sides of the expression with respect to ‘x’.
\[\dfrac{dy}{dx}=2\left( {{\cos }^{-1}}x \right)\times \dfrac{-1}{\sqrt{1-{{x}^{2}}}}\]
The derivative of \[{{\cos }^{-1}}x\]with respect to \[x=-\dfrac{1}{\sqrt{1-{{x}^{2}}}}\].
Thus we got, \[{{y}^{'}}=\dfrac{dy}{dx}=\dfrac{-2\left( {{\cos }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}}\].
Now let us differentiate it again, w.r.t x. thus \[\dfrac{dy}{dx}\]becomes \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
The division rule for differentiation says that, if
\[u=f\left( x \right)\]and \[v=g\left( x \right)\]then,
\[\dfrac{d}{dx}\left[ \dfrac{u}{v} \right]=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]
Here, \[u=-2{{\cos }^{-1}}x\]and \[v=\sqrt{1-{{x}^{2}}}\].
\[\begin{align}
& \therefore \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-2\left[ \dfrac{\sqrt{1-{{x}^{2}}}\dfrac{d}{dx}\left( {{\cos }^{-1}}x \right)-\left( {{\cos }^{-1}}x \right)\dfrac{d}{dx}\sqrt{1-{{x}^{2}}}}{{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}} \right] \\
& =-2\left[ \dfrac{\sqrt{1-{{x}^{2}}}\left( \dfrac{-1}{\sqrt{1-{{x}^{2}}}} \right)-\left( {{\cos }^{-1}}x\times \dfrac{1}{2}\times \dfrac{-2x}{\sqrt{1-{{x}^{2}}}} \right)}{1-{{x}^{2}}} \right] \\
\end{align}\]
[\[\therefore \]While differentiation, \[\dfrac{d}{dx}\sqrt{1-{{x}^{2}}}\]
\[\begin{align}
& =\dfrac{d}{dx}{{\left( 1-{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}\dfrac{d}{dx}{{\left( 1-{{x}^{2}} \right)}^{1-\dfrac{1}{2}}}\times \left( -2x \right) \\
& =\dfrac{1}{2}\times \dfrac{-2x}{\sqrt{1-{{x}^{2}}}}=\dfrac{-x}{\sqrt{1-{{x}^{2}}}} ]\\
& =\dfrac{-2\left[ -1-\left[ {{\cos }^{-1}}x\times \dfrac{-x}{\sqrt{1-{{x}^{2}}}} \right] \right]}{1-{{x}^{2}}} \\
& =\dfrac{-2\left[ -1+\dfrac{x{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}} \right]}{1-{{x}^{2}}}=\left[ \dfrac{2-\dfrac{2x{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}}}{1-{{x}^{2}}} \right] \\
\end{align}\]
\[\therefore \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left[ \dfrac{2-\dfrac{2x{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}}}{1-{{x}^{2}}} \right]\]and \[\dfrac{dy}{dx}=\dfrac{-2{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\].
By substituting \[\dfrac{dy}{dx}\]in \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2+x.\dfrac{dy}{dx}}{1-{{x}^{2}}} \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2+x.\dfrac{dy}{dx} \\
& \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x.\dfrac{dy}{dx}=2-(1) \\
\end{align}\]
We can compare the differential equation given in the question to equation (1).
\[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x.\dfrac{dy}{dx}=c\], (by comparing to equation (1))
We get, c = 2.
Thus, \[\sqrt{y}={{\cos }^{-1}}x\], satisfies the differential equation \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x.\dfrac{dy}{dx}=2\], where value of c = 2.
Hence, option (d) is correct.
Note: We have used lots of trigonometric functions and their differentiations. Remember these formulae as they will be useful while solving problems like these.
Square the expression \[\sqrt{y}={{\cos }^{-1}}x\]to make the differentiation and simplification easy or else it becomes very complex to solve.
Complete step-by-step answer:
Given to us is the expression, \[\sqrt{y}={{\cos }^{-1}}x\].
Let us square both sides of the expression,
\[\begin{align}
& {{\left( \sqrt{y} \right)}^{2}}={{\left( {{\cos }^{-1}}x \right)}^{2}} \\
& \Rightarrow y={{\left( {{\cos }^{-1}}x \right)}^{2}} \\
\end{align}\]
Let us differentiate both sides of the expression with respect to ‘x’.
\[\dfrac{dy}{dx}=2\left( {{\cos }^{-1}}x \right)\times \dfrac{-1}{\sqrt{1-{{x}^{2}}}}\]
The derivative of \[{{\cos }^{-1}}x\]with respect to \[x=-\dfrac{1}{\sqrt{1-{{x}^{2}}}}\].
Thus we got, \[{{y}^{'}}=\dfrac{dy}{dx}=\dfrac{-2\left( {{\cos }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}}\].
Now let us differentiate it again, w.r.t x. thus \[\dfrac{dy}{dx}\]becomes \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
The division rule for differentiation says that, if
\[u=f\left( x \right)\]and \[v=g\left( x \right)\]then,
\[\dfrac{d}{dx}\left[ \dfrac{u}{v} \right]=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]
Here, \[u=-2{{\cos }^{-1}}x\]and \[v=\sqrt{1-{{x}^{2}}}\].
\[\begin{align}
& \therefore \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-2\left[ \dfrac{\sqrt{1-{{x}^{2}}}\dfrac{d}{dx}\left( {{\cos }^{-1}}x \right)-\left( {{\cos }^{-1}}x \right)\dfrac{d}{dx}\sqrt{1-{{x}^{2}}}}{{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}} \right] \\
& =-2\left[ \dfrac{\sqrt{1-{{x}^{2}}}\left( \dfrac{-1}{\sqrt{1-{{x}^{2}}}} \right)-\left( {{\cos }^{-1}}x\times \dfrac{1}{2}\times \dfrac{-2x}{\sqrt{1-{{x}^{2}}}} \right)}{1-{{x}^{2}}} \right] \\
\end{align}\]
[\[\therefore \]While differentiation, \[\dfrac{d}{dx}\sqrt{1-{{x}^{2}}}\]
\[\begin{align}
& =\dfrac{d}{dx}{{\left( 1-{{x}^{2}} \right)}^{\dfrac{1}{2}}}=\dfrac{1}{2}\dfrac{d}{dx}{{\left( 1-{{x}^{2}} \right)}^{1-\dfrac{1}{2}}}\times \left( -2x \right) \\
& =\dfrac{1}{2}\times \dfrac{-2x}{\sqrt{1-{{x}^{2}}}}=\dfrac{-x}{\sqrt{1-{{x}^{2}}}} ]\\
& =\dfrac{-2\left[ -1-\left[ {{\cos }^{-1}}x\times \dfrac{-x}{\sqrt{1-{{x}^{2}}}} \right] \right]}{1-{{x}^{2}}} \\
& =\dfrac{-2\left[ -1+\dfrac{x{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}} \right]}{1-{{x}^{2}}}=\left[ \dfrac{2-\dfrac{2x{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}}}{1-{{x}^{2}}} \right] \\
\end{align}\]
\[\therefore \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left[ \dfrac{2-\dfrac{2x{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}}}{1-{{x}^{2}}} \right]\]and \[\dfrac{dy}{dx}=\dfrac{-2{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\].
By substituting \[\dfrac{dy}{dx}\]in \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\].
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2+x.\dfrac{dy}{dx}}{1-{{x}^{2}}} \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2+x.\dfrac{dy}{dx} \\
& \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x.\dfrac{dy}{dx}=2-(1) \\
\end{align}\]
We can compare the differential equation given in the question to equation (1).
\[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x.\dfrac{dy}{dx}=c\], (by comparing to equation (1))
We get, c = 2.
Thus, \[\sqrt{y}={{\cos }^{-1}}x\], satisfies the differential equation \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x.\dfrac{dy}{dx}=2\], where value of c = 2.
Hence, option (d) is correct.
Note: We have used lots of trigonometric functions and their differentiations. Remember these formulae as they will be useful while solving problems like these.
Square the expression \[\sqrt{y}={{\cos }^{-1}}x\]to make the differentiation and simplification easy or else it becomes very complex to solve.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

