
If \[\sin \theta = \dfrac{{\sqrt 3 }}{2}\]and\[\cos \phi = \dfrac{1}{{\sqrt 2 }}\] Find the value of \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\]
Answer
583.5k+ views
Hint: Here we use the table which gives us the value of trigonometric functions at different angles.
With the help of the table we find the values of \[\theta \] and \[\phi \]. Substitute the values of obtained angles in the numerator and denominator and write the values of trigonometric functions using the table.
* Table for trigonometric functions like sine, cosine and tan at angles \[{0^ \circ },{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ }\] is
Complete step-by-step answer:
We are given that \[\sin \theta = \dfrac{{\sqrt 3 }}{2}\]
So, here the angle is \[\theta \]
We know that the value of sine function is \[\dfrac{{\sqrt 3 }}{2}\]when the angle is \[{60^ \circ }\]
Therefore, we can write value of \[\dfrac{{\sqrt 3 }}{2} = \sin {60^ \circ }\]
\[ \Rightarrow \sin \theta = \sin {60^ \circ }\]
We know the value of trigonometric function will be equal if the angles will be of equal measure
\[ \Rightarrow \theta = {60^ \circ }\] … (1)
Also,\[\cos \phi = \dfrac{1}{{\sqrt 2 }}\]
So, here the angle is \[\phi \]
We know that the value of cosine function is \[\dfrac{1}{{\sqrt 2 }}\]when the angle is \[{45^ \circ }\]
Therefore, we can write value of \[\dfrac{1}{{\sqrt 2 }} = \cos {45^ \circ }\]
\[ \Rightarrow \cos \phi = \cos {45^ \circ }\]
We know the value of trigonometric function will be equal if the angles will be of equal measure
\[ \Rightarrow \phi = {45^ \circ }\] … (2)
Now we have to find the value of \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\]
Substitute the values of angle \[\theta \]from equation (1) and angle \[\phi \]from equation (2) in numerator and denominator of \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\tan {{60}^ \circ } - \tan {{45}^ \circ }}}{{1 + \tan {{60}^ \circ }\tan {{45}^ \circ }}}\] … (3)
Now we find the values of \[\tan {60^ \circ }\]and\[\tan {45^ \circ }\]from the table.
\[\tan {60^ \circ } = \sqrt 3 \]and\[\tan {45^ \circ } = 1\]
Substitute the values in numerator and denominator of equation (3)
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 \times 1}}\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\]
Rationalize the term in RHS by multiplying both numerator and denominator by \[\sqrt 3 - 1\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}\]
Multiply the numerator with numerator and denominator with denominator
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}}\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}}\]
Use the property\[{(a - b)^2} = {a^2} + {b^2} - 2ab\]in numerator and the property \[(a + b)(a - b) = {a^2} - {b^2}\]in denominator of RHS
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\left( {{{(\sqrt 3 )}^2} + {{(1)}^2} - 2 \times (\sqrt 3 \times 1)} \right)}}{{{{(\sqrt 3 )}^2} - {{(1)}^2}}}\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}}\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{4 - 2\sqrt 3 }}{2}\]
Take 2 common from numerator in RHS of the equation
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{2(2 - \sqrt 3 )}}{2}\]
Cancel the same factors from numerator and denominator.
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = 2 - \sqrt 3 \]
So, the value of \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\] is \[2 - \sqrt 3 \].
Note: Students might try to use the property of \[\tan A - \tan B = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\] to write \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\]. But then we will have the term equal to \[\tan (\theta - \phi ) = \tan {15^ \circ }\]. Since, we don’t know the value of \[\tan {15^ \circ }\] we avoid this process. Also, many students leave the answer with an irrational number i.e. under root value in the denominator, keep in mind the answer should always be rationalized and in lowest form.
With the help of the table we find the values of \[\theta \] and \[\phi \]. Substitute the values of obtained angles in the numerator and denominator and write the values of trigonometric functions using the table.
* Table for trigonometric functions like sine, cosine and tan at angles \[{0^ \circ },{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ }\] is
| ANGLEFUNCTION | \[{0^ \circ }\] | \[{30^ \circ }\] | \[{45^ \circ }\] | \[{60^ \circ }\] | \[{90^ \circ }\] |
| Sin | 0 | \[\dfrac{1}{2}\] | \[\dfrac{1}{{\sqrt 2 }}\] | \[\dfrac{{\sqrt 3 }}{2}\] | 1 |
| Cos | 1 | \[\dfrac{{\sqrt 3 }}{2}\] | \[\dfrac{1}{{\sqrt 2 }}\] | \[\dfrac{1}{2}\] | 0 |
| Tan | 0 | \[\dfrac{1}{{\sqrt 3 }}\] | 1 | \[\sqrt 3 \] | Not defined |
Complete step-by-step answer:
We are given that \[\sin \theta = \dfrac{{\sqrt 3 }}{2}\]
So, here the angle is \[\theta \]
We know that the value of sine function is \[\dfrac{{\sqrt 3 }}{2}\]when the angle is \[{60^ \circ }\]
Therefore, we can write value of \[\dfrac{{\sqrt 3 }}{2} = \sin {60^ \circ }\]
\[ \Rightarrow \sin \theta = \sin {60^ \circ }\]
We know the value of trigonometric function will be equal if the angles will be of equal measure
\[ \Rightarrow \theta = {60^ \circ }\] … (1)
Also,\[\cos \phi = \dfrac{1}{{\sqrt 2 }}\]
So, here the angle is \[\phi \]
We know that the value of cosine function is \[\dfrac{1}{{\sqrt 2 }}\]when the angle is \[{45^ \circ }\]
Therefore, we can write value of \[\dfrac{1}{{\sqrt 2 }} = \cos {45^ \circ }\]
\[ \Rightarrow \cos \phi = \cos {45^ \circ }\]
We know the value of trigonometric function will be equal if the angles will be of equal measure
\[ \Rightarrow \phi = {45^ \circ }\] … (2)
Now we have to find the value of \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\]
Substitute the values of angle \[\theta \]from equation (1) and angle \[\phi \]from equation (2) in numerator and denominator of \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\tan {{60}^ \circ } - \tan {{45}^ \circ }}}{{1 + \tan {{60}^ \circ }\tan {{45}^ \circ }}}\] … (3)
Now we find the values of \[\tan {60^ \circ }\]and\[\tan {45^ \circ }\]from the table.
\[\tan {60^ \circ } = \sqrt 3 \]and\[\tan {45^ \circ } = 1\]
Substitute the values in numerator and denominator of equation (3)
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 \times 1}}\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}\]
Rationalize the term in RHS by multiplying both numerator and denominator by \[\sqrt 3 - 1\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}\]
Multiply the numerator with numerator and denominator with denominator
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}}\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}}\]
Use the property\[{(a - b)^2} = {a^2} + {b^2} - 2ab\]in numerator and the property \[(a + b)(a - b) = {a^2} - {b^2}\]in denominator of RHS
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{\left( {{{(\sqrt 3 )}^2} + {{(1)}^2} - 2 \times (\sqrt 3 \times 1)} \right)}}{{{{(\sqrt 3 )}^2} - {{(1)}^2}}}\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}}\]
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{4 - 2\sqrt 3 }}{2}\]
Take 2 common from numerator in RHS of the equation
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = \dfrac{{2(2 - \sqrt 3 )}}{2}\]
Cancel the same factors from numerator and denominator.
\[ \Rightarrow \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }} = 2 - \sqrt 3 \]
So, the value of \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\] is \[2 - \sqrt 3 \].
Note: Students might try to use the property of \[\tan A - \tan B = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\] to write \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\]. But then we will have the term equal to \[\tan (\theta - \phi ) = \tan {15^ \circ }\]. Since, we don’t know the value of \[\tan {15^ \circ }\] we avoid this process. Also, many students leave the answer with an irrational number i.e. under root value in the denominator, keep in mind the answer should always be rationalized and in lowest form.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

