
If $\sin \theta = \dfrac{{\sqrt 3 }}{2}$, find the values of all T-ratios of $\theta $.
Answer
570.6k+ views
Hint: In this question, we are given the value of $\sin \theta $ and we are asked to find all other trigonometric ratios. We have to find all the trigonometric ratios, step by step. We know the identity, ${\sin ^2}\theta + {\cos ^2}\theta = 1$. Using this relation $\cos \theta $ can be obtained. Now, we have the value of $\sin \theta $ and $\cos \theta $. By these values, $\tan \theta $ can be calculated. Now, other remaining trigonometric ratios can be calculated by finding the reciprocal of these trigonometric ratios.
Complete step-by-step solution:
Now, according to the question, it is given that
$\sin \theta = \dfrac{{\sqrt 3 }}{2}$....................….. (1)
As we know the identity,
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Taking ${\sin ^2}\theta $ to the right side, we get
$ \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta $
Now, $\cos \theta $ can be expressed in terms of $\sin \theta $.
Taking square root on both sides, we get,
$ \Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta } $
Substitute the value of $\sin \theta $ from the equation (1),
$ \Rightarrow \cos \theta = \sqrt {1 - {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} $
Square the term inside the square root,
$ \Rightarrow \cos \theta = \sqrt {1 - \dfrac{3}{4}} $
Take LCM inside the square root,
$ \Rightarrow \cos \theta = \sqrt {\dfrac{{4 - 3}}{4}} $
Subtract the values in the numerator,
$ \Rightarrow \cos \theta = \sqrt {\dfrac{1}{4}} $
Simplify the term,
$ \Rightarrow \cos \theta = \dfrac{1}{2}$......................….. (2)
As we know,
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
Substitute the values from equation (1) and (2),
$ \Rightarrow \tan \theta = \dfrac{{\dfrac{{\sqrt 3 }}{2}}}{{\dfrac{1}{2}}}$
Cancel out the common factors,
$ \Rightarrow \tan \theta = \sqrt 3 $....................….. (3)
We have to find other remaining trigonometric ratios that are $\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $.
As we know,
$\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}$
Substitute the value from equation (1),
$ \Rightarrow \operatorname{cosec} \theta = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}$
Simplify the term,
$ \Rightarrow \operatorname{cosec} \theta = \dfrac{2}{{\sqrt 3 }}$
As we know,
$sec\theta = \dfrac{1}{{\cos \theta }}$
Substitute the value from equation (2),
$ \Rightarrow sec\theta = \dfrac{1}{{\dfrac{1}{2}}}$
Simplify the term,
$ \Rightarrow \sec \theta = 2$
As we know,
$\cot \theta = \dfrac{1}{{\tan \theta }}$
Substitute the value from equation (3),
$ \Rightarrow \cot \theta = \dfrac{1}{{\sqrt 3 }}$
Note: This question can also be solved by using the Pythagoras theorem.
We have,
$ \Rightarrow \sin \theta = \dfrac{{\sqrt 3 }}{2}$.................….. (1)
As we know,
$\sin \theta = \dfrac{{{\text{height}}}}{{{\text{hypotenuse}}}}$
So, the value of height and hypotenuse is,
$ \Rightarrow $ Height $ = \sqrt 3 $
$ \Rightarrow $ Hypotenuse $ = 2$
Using Pythagoras theorem, we can find the base.
$ \Rightarrow {\text{base}} = \sqrt {{{\left( {{\text{hypotenuse}}} \right)}^2} - {{\left( {{\text{height}}} \right)}^2}} $
Substitute the values,
$ \Rightarrow $ base $ = \sqrt {{2^2} - {{\left( {\sqrt 3 } \right)}^2}} $
Square the terms,
$ \Rightarrow $ base $ = \sqrt {4 - 3} $
Subtract the values,
$ \Rightarrow $ base $ = \sqrt 1 $
Simplify the terms,
$ \Rightarrow $ base $ = 1$
As we know,
$\cos \theta = \dfrac{{{\text{base}}}}{{{\text{hypotenuse}}}}$
Substitute the values,
$ \Rightarrow \cos \theta = \dfrac{1}{2}$....................….. (2)
As we know,
$\tan \theta = \dfrac{{{\text{height}}}}{{{\text{base}}}}$
Substitute the values,
$ \Rightarrow \tan \theta = \dfrac{{\sqrt 3 }}{1}$
Simplify the terms,
$ \Rightarrow \tan \theta = \sqrt 3 $..............….. (3)
We have to find other remaining trigonometric ratios that are $\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $.
As we know,
$\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}$
Substitute the value from equation (1),
$ \Rightarrow \operatorname{cosec} \theta = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}$
Simplify the term,
$ \Rightarrow \operatorname{cosec} \theta = \dfrac{2}{{\sqrt 3 }}$
As we know,
$sec\theta = \dfrac{1}{{\cos \theta }}$
Substitute the value from equation (2),
$ \Rightarrow sec\theta = \dfrac{1}{{\dfrac{1}{2}}}$
Simplify the term,
$ \Rightarrow \sec \theta = 2$
As we know,
$\cot \theta = \dfrac{1}{{\tan \theta }}$
Substitute the value from equation (3),
$ \Rightarrow \cot \theta = \dfrac{1}{{\sqrt 3 }}$
Complete step-by-step solution:
Now, according to the question, it is given that
$\sin \theta = \dfrac{{\sqrt 3 }}{2}$....................….. (1)
As we know the identity,
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Taking ${\sin ^2}\theta $ to the right side, we get
$ \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta $
Now, $\cos \theta $ can be expressed in terms of $\sin \theta $.
Taking square root on both sides, we get,
$ \Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta } $
Substitute the value of $\sin \theta $ from the equation (1),
$ \Rightarrow \cos \theta = \sqrt {1 - {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}} $
Square the term inside the square root,
$ \Rightarrow \cos \theta = \sqrt {1 - \dfrac{3}{4}} $
Take LCM inside the square root,
$ \Rightarrow \cos \theta = \sqrt {\dfrac{{4 - 3}}{4}} $
Subtract the values in the numerator,
$ \Rightarrow \cos \theta = \sqrt {\dfrac{1}{4}} $
Simplify the term,
$ \Rightarrow \cos \theta = \dfrac{1}{2}$......................….. (2)
As we know,
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
Substitute the values from equation (1) and (2),
$ \Rightarrow \tan \theta = \dfrac{{\dfrac{{\sqrt 3 }}{2}}}{{\dfrac{1}{2}}}$
Cancel out the common factors,
$ \Rightarrow \tan \theta = \sqrt 3 $....................….. (3)
We have to find other remaining trigonometric ratios that are $\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $.
As we know,
$\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}$
Substitute the value from equation (1),
$ \Rightarrow \operatorname{cosec} \theta = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}$
Simplify the term,
$ \Rightarrow \operatorname{cosec} \theta = \dfrac{2}{{\sqrt 3 }}$
As we know,
$sec\theta = \dfrac{1}{{\cos \theta }}$
Substitute the value from equation (2),
$ \Rightarrow sec\theta = \dfrac{1}{{\dfrac{1}{2}}}$
Simplify the term,
$ \Rightarrow \sec \theta = 2$
As we know,
$\cot \theta = \dfrac{1}{{\tan \theta }}$
Substitute the value from equation (3),
$ \Rightarrow \cot \theta = \dfrac{1}{{\sqrt 3 }}$
Note: This question can also be solved by using the Pythagoras theorem.
We have,
$ \Rightarrow \sin \theta = \dfrac{{\sqrt 3 }}{2}$.................….. (1)
As we know,
$\sin \theta = \dfrac{{{\text{height}}}}{{{\text{hypotenuse}}}}$
So, the value of height and hypotenuse is,
$ \Rightarrow $ Height $ = \sqrt 3 $
$ \Rightarrow $ Hypotenuse $ = 2$
Using Pythagoras theorem, we can find the base.
$ \Rightarrow {\text{base}} = \sqrt {{{\left( {{\text{hypotenuse}}} \right)}^2} - {{\left( {{\text{height}}} \right)}^2}} $
Substitute the values,
$ \Rightarrow $ base $ = \sqrt {{2^2} - {{\left( {\sqrt 3 } \right)}^2}} $
Square the terms,
$ \Rightarrow $ base $ = \sqrt {4 - 3} $
Subtract the values,
$ \Rightarrow $ base $ = \sqrt 1 $
Simplify the terms,
$ \Rightarrow $ base $ = 1$
As we know,
$\cos \theta = \dfrac{{{\text{base}}}}{{{\text{hypotenuse}}}}$
Substitute the values,
$ \Rightarrow \cos \theta = \dfrac{1}{2}$....................….. (2)
As we know,
$\tan \theta = \dfrac{{{\text{height}}}}{{{\text{base}}}}$
Substitute the values,
$ \Rightarrow \tan \theta = \dfrac{{\sqrt 3 }}{1}$
Simplify the terms,
$ \Rightarrow \tan \theta = \sqrt 3 $..............….. (3)
We have to find other remaining trigonometric ratios that are $\operatorname{cosec} \theta ,\sec \theta $ and $\cot \theta $.
As we know,
$\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}$
Substitute the value from equation (1),
$ \Rightarrow \operatorname{cosec} \theta = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}$
Simplify the term,
$ \Rightarrow \operatorname{cosec} \theta = \dfrac{2}{{\sqrt 3 }}$
As we know,
$sec\theta = \dfrac{1}{{\cos \theta }}$
Substitute the value from equation (2),
$ \Rightarrow sec\theta = \dfrac{1}{{\dfrac{1}{2}}}$
Simplify the term,
$ \Rightarrow \sec \theta = 2$
As we know,
$\cot \theta = \dfrac{1}{{\tan \theta }}$
Substitute the value from equation (3),
$ \Rightarrow \cot \theta = \dfrac{1}{{\sqrt 3 }}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

