
If $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ and $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ , find the values of $\sin 15$ and $\cos 15$ .
Answer
596.7k+ views
Hint: We will use the above two formula $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ or$\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$, then we will put the values of A = 45 and B = 30, then we will substitute the values in the given formula and find the value of sin15 and cos15.
Complete step-by-step answer:
Let’s start our solution,
Putting the values of A = 45 and B = 30 in $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ we get,
$\sin \left( 45-30 \right)=\sin 45\cos 30-\cos 45\sin 30$
Now we know that, $\sin 30=\dfrac{1}{2}$ , $\sin 45=\cos 45=\dfrac{1}{\sqrt{2}}$ and $\cos 30=\dfrac{\sqrt{3}}{2}$ using this we get,
$\begin{align}
& \sin 15=\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2}-\dfrac{1}{\sqrt{2}}\times \dfrac{1}{2} \\
& \sin 15=\dfrac{\sqrt{3}-1}{2\sqrt{2}} \\
\end{align}$
Hence, we have found the value of sin15 using the formula $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
Now we will use the formula $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ to find the value of cos15
Putting the values of A = 45 and B = 30 in $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ we get,
$\cos \left( 45-30 \right)=\cos 45\cos 30+\sin 45\sin 30$
Now we know that, $\sin 30=\dfrac{1}{2}$ , $\sin 45=\cos 45=\dfrac{1}{\sqrt{2}}$ and $\cos 30=\dfrac{\sqrt{3}}{2}$ using this we get,
$\begin{align}
& \cos 15=\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{\sqrt{2}}\times \dfrac{1}{2} \\
& \cos 15=\dfrac{\sqrt{3}+1}{2\sqrt{2}} \\
\end{align}$
Hence, we have found the value of cos15 using the formula $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$
Hence we have found the value of both sin15 and cos15.
Note: Here we have used the given trigonometric formula to find the value of sin15 and cos15. One can also use the formula $\cos 2x=2{{\cos }^{2}}x-1$ and the put the value of x = 15 and find the value of cos15 from there and then use the relation $\sin x=\sqrt{1-{{\cos }^{2}}x}$then substitute the value of cos15 and find the value of sin15 from there. In this method we have to do less calculation compared to the one that is given in the solution, but the formulas to use must be remembered.
Complete step-by-step answer:
Let’s start our solution,
Putting the values of A = 45 and B = 30 in $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ we get,
$\sin \left( 45-30 \right)=\sin 45\cos 30-\cos 45\sin 30$
Now we know that, $\sin 30=\dfrac{1}{2}$ , $\sin 45=\cos 45=\dfrac{1}{\sqrt{2}}$ and $\cos 30=\dfrac{\sqrt{3}}{2}$ using this we get,
$\begin{align}
& \sin 15=\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2}-\dfrac{1}{\sqrt{2}}\times \dfrac{1}{2} \\
& \sin 15=\dfrac{\sqrt{3}-1}{2\sqrt{2}} \\
\end{align}$
Hence, we have found the value of sin15 using the formula $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$
Now we will use the formula $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ to find the value of cos15
Putting the values of A = 45 and B = 30 in $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ we get,
$\cos \left( 45-30 \right)=\cos 45\cos 30+\sin 45\sin 30$
Now we know that, $\sin 30=\dfrac{1}{2}$ , $\sin 45=\cos 45=\dfrac{1}{\sqrt{2}}$ and $\cos 30=\dfrac{\sqrt{3}}{2}$ using this we get,
$\begin{align}
& \cos 15=\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{\sqrt{2}}\times \dfrac{1}{2} \\
& \cos 15=\dfrac{\sqrt{3}+1}{2\sqrt{2}} \\
\end{align}$
Hence, we have found the value of cos15 using the formula $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$
Hence we have found the value of both sin15 and cos15.
Note: Here we have used the given trigonometric formula to find the value of sin15 and cos15. One can also use the formula $\cos 2x=2{{\cos }^{2}}x-1$ and the put the value of x = 15 and find the value of cos15 from there and then use the relation $\sin x=\sqrt{1-{{\cos }^{2}}x}$then substitute the value of cos15 and find the value of sin15 from there. In this method we have to do less calculation compared to the one that is given in the solution, but the formulas to use must be remembered.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

