
If $\sin A+\cos A=\dfrac{7}{5}$ and $\sin A\cos A=\dfrac{12}{25}$, find the values of $\sin A$ and $\cos A$.
Answer
607.8k+ views
Hint:Use the relation: $\sin A\cos A=\dfrac{12}{25}$ and write $\cos A$ in terms of $\sin A$. Substitute the value of \[\cos A\] in the relation: $\sin A+\cos A=\dfrac{7}{5}$ to obtain a quadratic equation in $\sin A$. Solve this quadratic equation by the help of middle term split and get the values of $\sin A$. Corresponding to these values of $\sin A$, find the values of $\cos A$ using first relation.
Complete step-by-step answer:
We have been provided with two equations:
$\sin A+\cos A=\dfrac{7}{5}.................(i)$
$\sin A\cos A=\dfrac{12}{25}...................(ii)$
Now, from equation (ii), we have,
$\begin{align}
& \sin A\cos A=\dfrac{12}{25} \\
& \Rightarrow \cos A=\dfrac{12}{25\sin A} \\
\end{align}$
Substituting this value of $\cos A$ in equation (i), we have,
$\sin A+\dfrac{12}{25\sin A}=\dfrac{7}{5}$
Taking L.C.M we get,
$\begin{align}
& \dfrac{25{{\sin }^{2}}A+12}{25\sin A}=\dfrac{7}{5} \\
& \Rightarrow \dfrac{25{{\sin }^{2}}A+12}{5\sin A}=7 \\
\end{align}$
By cross-multiplication, we get,
$\begin{align}
& 25{{\sin }^{2}}A+12=35\sin A \\
& \Rightarrow 25{{\sin }^{2}}A-35\sin A+12=0 \\
\end{align}$
This is a quadratic equation with its variable as: $\sin A$. Now, splitting the middle term, we get,
$\begin{align}
& 25{{\sin }^{2}}A-15\sin A-20\sin A+12=0 \\
& \Rightarrow 5\sin A\left( 5\sin A-3 \right)-4\left( 5\sin A-3 \right)=0 \\
& \Rightarrow \left( 5\sin A-3 \right)\left( 5\sin A-4 \right)=0 \\
\end{align}$
Substituting each term equal to 0, we get,
$\begin{align}
& \left( 5\sin A-3 \right)=0\text{ or }\left( 5\sin A-4 \right)=0 \\
& \Rightarrow 5\sin A=3\text{ or }5\sin A=4 \\
& \Rightarrow \sin A=\dfrac{3}{5}\text{ or }\sin A=\dfrac{4}{5} \\
\end{align}$
We have obtained two values of $\sin A$ and we have to find the values of $\cos A$ corresponding to these. Using equation (i): $\sin A+\cos A=\dfrac{7}{5}$, we have,
Case (i): When $\sin A=\dfrac{3}{5}$.
\[\begin{align}
& \Rightarrow \dfrac{3}{5}+\cos A=\dfrac{7}{5} \\
& \Rightarrow \cos A=\dfrac{7}{5}-\dfrac{3}{5} \\
& \Rightarrow \cos A=\dfrac{7-3}{5} \\
& \Rightarrow \cos A=\dfrac{4}{5} \\
\end{align}\]
Case (ii): When $\sin A=\dfrac{4}{5}$.
\[\begin{align}
& \Rightarrow \dfrac{4}{5}+\cos A=\dfrac{7}{5} \\
& \Rightarrow \cos A=\dfrac{7}{5}-\dfrac{4}{5} \\
& \Rightarrow \cos A=\dfrac{7-4}{5} \\
& \Rightarrow \cos A=\dfrac{3}{5} \\
\end{align}\]
Hence, the values of $\sin A$ are: $\dfrac{3}{5}$ and $\dfrac{4}{5}$ and the corresponding values of $\cos A$ are: $\dfrac{4}{5}$ and $\dfrac{3}{5}$.
Note: One may note that, we can also substitute the value of $\sin A$ from relation (ii), in relation (i). The answer will be the same. Here, we have to consider both the values of $\sin A$ and $\cos A$ because they are both satisfying the equations and are in the range of these functions. There is nothing on the basis of which one value can be rejected.
Complete step-by-step answer:
We have been provided with two equations:
$\sin A+\cos A=\dfrac{7}{5}.................(i)$
$\sin A\cos A=\dfrac{12}{25}...................(ii)$
Now, from equation (ii), we have,
$\begin{align}
& \sin A\cos A=\dfrac{12}{25} \\
& \Rightarrow \cos A=\dfrac{12}{25\sin A} \\
\end{align}$
Substituting this value of $\cos A$ in equation (i), we have,
$\sin A+\dfrac{12}{25\sin A}=\dfrac{7}{5}$
Taking L.C.M we get,
$\begin{align}
& \dfrac{25{{\sin }^{2}}A+12}{25\sin A}=\dfrac{7}{5} \\
& \Rightarrow \dfrac{25{{\sin }^{2}}A+12}{5\sin A}=7 \\
\end{align}$
By cross-multiplication, we get,
$\begin{align}
& 25{{\sin }^{2}}A+12=35\sin A \\
& \Rightarrow 25{{\sin }^{2}}A-35\sin A+12=0 \\
\end{align}$
This is a quadratic equation with its variable as: $\sin A$. Now, splitting the middle term, we get,
$\begin{align}
& 25{{\sin }^{2}}A-15\sin A-20\sin A+12=0 \\
& \Rightarrow 5\sin A\left( 5\sin A-3 \right)-4\left( 5\sin A-3 \right)=0 \\
& \Rightarrow \left( 5\sin A-3 \right)\left( 5\sin A-4 \right)=0 \\
\end{align}$
Substituting each term equal to 0, we get,
$\begin{align}
& \left( 5\sin A-3 \right)=0\text{ or }\left( 5\sin A-4 \right)=0 \\
& \Rightarrow 5\sin A=3\text{ or }5\sin A=4 \\
& \Rightarrow \sin A=\dfrac{3}{5}\text{ or }\sin A=\dfrac{4}{5} \\
\end{align}$
We have obtained two values of $\sin A$ and we have to find the values of $\cos A$ corresponding to these. Using equation (i): $\sin A+\cos A=\dfrac{7}{5}$, we have,
Case (i): When $\sin A=\dfrac{3}{5}$.
\[\begin{align}
& \Rightarrow \dfrac{3}{5}+\cos A=\dfrac{7}{5} \\
& \Rightarrow \cos A=\dfrac{7}{5}-\dfrac{3}{5} \\
& \Rightarrow \cos A=\dfrac{7-3}{5} \\
& \Rightarrow \cos A=\dfrac{4}{5} \\
\end{align}\]
Case (ii): When $\sin A=\dfrac{4}{5}$.
\[\begin{align}
& \Rightarrow \dfrac{4}{5}+\cos A=\dfrac{7}{5} \\
& \Rightarrow \cos A=\dfrac{7}{5}-\dfrac{4}{5} \\
& \Rightarrow \cos A=\dfrac{7-4}{5} \\
& \Rightarrow \cos A=\dfrac{3}{5} \\
\end{align}\]
Hence, the values of $\sin A$ are: $\dfrac{3}{5}$ and $\dfrac{4}{5}$ and the corresponding values of $\cos A$ are: $\dfrac{4}{5}$ and $\dfrac{3}{5}$.
Note: One may note that, we can also substitute the value of $\sin A$ from relation (ii), in relation (i). The answer will be the same. Here, we have to consider both the values of $\sin A$ and $\cos A$ because they are both satisfying the equations and are in the range of these functions. There is nothing on the basis of which one value can be rejected.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

