
If ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \left( {\dfrac{\pi }{2}} \right)$, then the value of $\dfrac{{dy}}{{dx}}$ is equal to:
A. $\dfrac{x}{y}$
B. $ - \dfrac{x}{y}$
C. $\dfrac{y}{x}$
D. $ - \dfrac{y}{x}$
Answer
506.1k+ views
Hint: In the given problem, we are required to differentiate both sides of the equation ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \left( {\dfrac{\pi }{2}} \right)$ with respect to x and find the value of $\dfrac{{dy}}{{dx}}$. So, we will have to apply the chain rule of differentiation in the process of differentiation. So, differentiation of ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \left( {\dfrac{\pi }{2}} \right)$ with respect to x will be done layer by layer using the chain rule of differentiation. The derivative of \[{\sin ^{ - 1}}\left( x \right)\] with respect to x must be remembered.
Complete step by step answer:
So, we have, ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \left( {\dfrac{\pi }{2}} \right)$
Differentiating both sides of the equation with respect to x, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}x + {{\sin }^{ - 1}}y} \right] = \dfrac{d}{{dx}}\left( {\dfrac{\pi }{2}} \right)$
Now, we know that the derivative of a constant term with respect to x is zero. So, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}x} \right] + \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}y} \right] = 0$
Now, we know that the derivative of ${\sin ^{ - 1}}x$ with respect to x is $\dfrac{1}{{\sqrt {1 - {x^2}} }}$. So, we get,
$ \Rightarrow \dfrac{1}{{\sqrt {1 - {x^2}} }} + \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}y} \right] = 0$
We use the chain rule of differentiation $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right)g'\left( x \right)$. So, we get,
$ \Rightarrow \dfrac{1}{{\sqrt {1 - {x^2}} }} + \dfrac{1}{{\sqrt {1 - {y^2}} }}\dfrac{{dy}}{{dx}} = 0$
Isolating the differential term $\dfrac{{dy}}{{dx}}$, we get,
$ \Rightarrow \dfrac{1}{{\sqrt {1 - {y^2}} }}\dfrac{{dy}}{{dx}} = - \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Cross multiplying the terms of equation,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt {1 - {y^2}} }}{{\sqrt {1 - {x^2}} }} - - - - \left( 1 \right)$
Now, again taking ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \left( {\dfrac{\pi }{2}} \right)$.
$ \Rightarrow {\sin ^{ - 1}}x = \left( {\dfrac{\pi }{2}} \right) - {\sin ^{ - 1}}y$
We know that the sine inverse and cosine inverse functions are complimentary. So, we get,
$ \Rightarrow {\sin ^{ - 1}}x = {\cos ^{ - 1}}y$
Taking sine on both sides of equation, we get,
$ \Rightarrow \sin \left( {{{\sin }^{ - 1}}x} \right) = \sin \left( {{{\cos }^{ - 1}}y} \right)$
$ \Rightarrow x = \sin \left( {{{\cos }^{ - 1}}y} \right) - - - - \left( 2 \right)$
Let us assume $\left( {{{\cos }^{ - 1}}y} \right)$ as $\theta $.
So, we have, $\theta = \left( {{{\cos }^{ - 1}}y} \right)$.
Taking cosine on both sides of the equation.
$ \Rightarrow \cos \theta = y$
Now, we know that $\sin \theta = \sqrt {1 - {{\cos }^2}\theta } $. So, we get the value of sine as,
$\sin \theta = \sqrt {1 - {y^2}} $
So, $\sin \left( {{{\cos }^{ - 1}}y} \right) = \sqrt {1 - {y^2}} $
Putting this back in equation $\left( 2 \right)$, we get,
$ \Rightarrow x = \sqrt {1 - {y^2}} $
Now, squaring both sides and shifting terms, we get,
$ \Rightarrow {y^2} = 1 - {x^2}$
$ \Rightarrow y = \sqrt {1 - {x^2}} $
Putting these in equation $\left( 1 \right)$, we get,
$ \therefore \dfrac{{dy}}{{dx}} = - \dfrac{x}{y}$
So, the value of $\dfrac{{dy}}{{dx}}$ is $\left( { - \dfrac{x}{y}} \right)$.
Hence, option B is the correct answer.
Note: The derivatives of basic functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer. Care must be taken while doing calculations and simplifying the expressions.
Complete step by step answer:
So, we have, ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \left( {\dfrac{\pi }{2}} \right)$
Differentiating both sides of the equation with respect to x, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}x + {{\sin }^{ - 1}}y} \right] = \dfrac{d}{{dx}}\left( {\dfrac{\pi }{2}} \right)$
Now, we know that the derivative of a constant term with respect to x is zero. So, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}x} \right] + \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}y} \right] = 0$
Now, we know that the derivative of ${\sin ^{ - 1}}x$ with respect to x is $\dfrac{1}{{\sqrt {1 - {x^2}} }}$. So, we get,
$ \Rightarrow \dfrac{1}{{\sqrt {1 - {x^2}} }} + \dfrac{d}{{dx}}\left[ {{{\sin }^{ - 1}}y} \right] = 0$
We use the chain rule of differentiation $\dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = f'\left( {g\left( x \right)} \right)g'\left( x \right)$. So, we get,
$ \Rightarrow \dfrac{1}{{\sqrt {1 - {x^2}} }} + \dfrac{1}{{\sqrt {1 - {y^2}} }}\dfrac{{dy}}{{dx}} = 0$
Isolating the differential term $\dfrac{{dy}}{{dx}}$, we get,
$ \Rightarrow \dfrac{1}{{\sqrt {1 - {y^2}} }}\dfrac{{dy}}{{dx}} = - \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Cross multiplying the terms of equation,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt {1 - {y^2}} }}{{\sqrt {1 - {x^2}} }} - - - - \left( 1 \right)$
Now, again taking ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \left( {\dfrac{\pi }{2}} \right)$.
$ \Rightarrow {\sin ^{ - 1}}x = \left( {\dfrac{\pi }{2}} \right) - {\sin ^{ - 1}}y$
We know that the sine inverse and cosine inverse functions are complimentary. So, we get,
$ \Rightarrow {\sin ^{ - 1}}x = {\cos ^{ - 1}}y$
Taking sine on both sides of equation, we get,
$ \Rightarrow \sin \left( {{{\sin }^{ - 1}}x} \right) = \sin \left( {{{\cos }^{ - 1}}y} \right)$
$ \Rightarrow x = \sin \left( {{{\cos }^{ - 1}}y} \right) - - - - \left( 2 \right)$
Let us assume $\left( {{{\cos }^{ - 1}}y} \right)$ as $\theta $.
So, we have, $\theta = \left( {{{\cos }^{ - 1}}y} \right)$.
Taking cosine on both sides of the equation.
$ \Rightarrow \cos \theta = y$
Now, we know that $\sin \theta = \sqrt {1 - {{\cos }^2}\theta } $. So, we get the value of sine as,
$\sin \theta = \sqrt {1 - {y^2}} $
So, $\sin \left( {{{\cos }^{ - 1}}y} \right) = \sqrt {1 - {y^2}} $
Putting this back in equation $\left( 2 \right)$, we get,
$ \Rightarrow x = \sqrt {1 - {y^2}} $
Now, squaring both sides and shifting terms, we get,
$ \Rightarrow {y^2} = 1 - {x^2}$
$ \Rightarrow y = \sqrt {1 - {x^2}} $
Putting these in equation $\left( 1 \right)$, we get,
$ \therefore \dfrac{{dy}}{{dx}} = - \dfrac{x}{y}$
So, the value of $\dfrac{{dy}}{{dx}}$ is $\left( { - \dfrac{x}{y}} \right)$.
Hence, option B is the correct answer.
Note: The derivatives of basic functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer. Care must be taken while doing calculations and simplifying the expressions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

