
If \[{{\sin }^{-1}}\left( \dfrac{2a}{1+{{a}^{2}}} \right)-{{\cos }^{-1}}\left( \dfrac{1-{{b}^{2}}}{1+{{b}^{2}}} \right)={{\tan }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)\], then the value of $x$ is
A. a
B. b
C. \[\dfrac{a+b}{1-ab}\]
D. \[\dfrac{a-b}{1+ab}\]
Answer
508.5k+ views
Hint: We first change the ratio of the given equations to one single form. We use the conversion forms of \[2{{\tan }^{-1}}\left( x \right)={{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)\], \[2{{\tan }^{-1}}\left( x \right)={{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)\] and \[2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)\]. We compress the ratio tan using \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}\]. We equate the values to find the solution.
Complete step by step answer:
We first convert all the trigonometric inverses into the same form of tan.
We use the theorems of \[2{{\tan }^{-1}}\left( x \right)={{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)\], \[2{{\tan }^{-1}}\left( x \right)={{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)\] and \[2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)\].
We exchange the values and get
\[\begin{align}
& {{\sin }^{-1}}\left( \dfrac{2a}{1+{{a}^{2}}} \right)-{{\cos }^{-1}}\left( \dfrac{1-{{b}^{2}}}{1+{{b}^{2}}} \right)={{\tan }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( a \right)-2{{\tan }^{-1}}\left( b \right)=2{{\tan }^{-1}}\left( x \right) \\
\end{align}\]
We divide both sides with 2 and get \[{{\tan }^{-1}}x={{\tan }^{-1}}a-{{\tan }^{-1}}b\].
We also use the inverse sum rule of \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}\].
Therefore, \[{{\tan }^{-1}}x={{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\dfrac{a-b}{1+ab}\].
Equating both sides we get \[x=\dfrac{a-b}{1+ab}\]. The correct option is option (D).
Note:
Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi +{{\left( -1 \right)}^{n}}a$ for $\sin \left( x \right)=\sin a$ where $-\dfrac{\pi }{2}\le a\le \dfrac{\pi }{2}$.
Complete step by step answer:
We first convert all the trigonometric inverses into the same form of tan.
We use the theorems of \[2{{\tan }^{-1}}\left( x \right)={{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)\], \[2{{\tan }^{-1}}\left( x \right)={{\cos }^{-1}}\left( \dfrac{1-{{x}^{2}}}{1+{{x}^{2}}} \right)\] and \[2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right)\].
We exchange the values and get
\[\begin{align}
& {{\sin }^{-1}}\left( \dfrac{2a}{1+{{a}^{2}}} \right)-{{\cos }^{-1}}\left( \dfrac{1-{{b}^{2}}}{1+{{b}^{2}}} \right)={{\tan }^{-1}}\left( \dfrac{2x}{1+{{x}^{2}}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( a \right)-2{{\tan }^{-1}}\left( b \right)=2{{\tan }^{-1}}\left( x \right) \\
\end{align}\]
We divide both sides with 2 and get \[{{\tan }^{-1}}x={{\tan }^{-1}}a-{{\tan }^{-1}}b\].
We also use the inverse sum rule of \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}\].
Therefore, \[{{\tan }^{-1}}x={{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\dfrac{a-b}{1+ab}\].
Equating both sides we get \[x=\dfrac{a-b}{1+ab}\]. The correct option is option (D).
Note:
Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi +{{\left( -1 \right)}^{n}}a$ for $\sin \left( x \right)=\sin a$ where $-\dfrac{\pi }{2}\le a\le \dfrac{\pi }{2}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

