
If \[{\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \dfrac{\pi }{2},\] then what is the value of x?
Answer
606.9k+ views
Hint: In this question, we have to find the value of x from the given equation. For that we will use the concept of Inverse trigonometric functions. Simply transform the equation such that move the \[2{\sin ^{ - 1}}x\] to the R.H.S and then take sin of both the sides. After that use the identity $\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta $ on the R.H.S and $\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta $ on the L.H.S . Now, use the property $\cos (2\theta ) = 1 - 2{\sin ^2}\theta $ on the R.H.S to simplify the equation and get the required value by simply solving the quadratic equation we get after that.
Complete step-by-step answer:
It is given that, \[{\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \dfrac{\pi }{2}\]
\[ \Rightarrow {\sin ^{ - 1}}(1 - x) = \dfrac{\pi }{2} + 2{\sin ^{ - 1}}x\]
Take sine of both sides
\[ \Rightarrow \sin \left( {{{\sin }^{ - 1}}(1 - x)} \right) = \sin \left( {\dfrac{\pi }{2} + 2{{\sin }^{ - 1}}x} \right)\]
\[ \Rightarrow (1 - x) = \sin \left( {\dfrac{\pi }{2} + 2{{\sin }^{ - 1}}x} \right)\]
We know that, $\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta $
\[ \Rightarrow (1 - x) = \cos \left( {2{{\sin }^{ - 1}}x} \right)\]
Now, we know that $\cos (2\theta ) = 1 - 2{\sin ^2}\theta $
\[ \Rightarrow (1 - x) = 1 - 2{\sin ^2}\left( {{{\sin }^{ - 1}}x} \right)\]
\[ \Rightarrow (1 - x) = 1 - 2\sin \left( {{{\sin }^{ - 1}}x} \right) \times \sin \left( {{{\sin }^{ - 1}}x} \right)\]
We know that $\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta $ for $\theta \in [ - 1,1]$
\[ \Rightarrow (1 - x) = 1 - 2{x^2}\]
\[ \Rightarrow 1 - x - 1 + 2{x^2} = 0\]
\[ \Rightarrow 2{x^2} - x = 0\]
Taking x common
\[ \Rightarrow x(2x - 1) = 0\]
Now, either $x = 0$ or $(2x - 1) = 0$
When $(2x - 1) = 0$
$ \Rightarrow 2x = 1$
Divide both sides by 2
$ \Rightarrow x = \dfrac{1}{2}$
Now, when $x = \dfrac{1}{2};$ check that by substituting that in the equation \[{\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \dfrac{\pi }{2}\]
Substitute in the L.H.S and check whether it gets equal to R.H.S
\[ = {\sin ^{ - 1}}\left( {1 - \dfrac{1}{2}} \right) - 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\]
\[ = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) - 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\]
Now, we know that \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{6}\]
\[ = \dfrac{\pi }{6} - \dfrac{{2\pi }}{6}\]
\[ = - \dfrac{\pi }{6}\] which is not equal to R.H.S
Now, when x = 0, substitute that in the equation \[{\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \dfrac{\pi }{2}\]
Substitute in the L.H.S and check whether it gets equal to R.H.S
\[ = {\sin ^{ - 1}}\left( {1 - 0} \right) - 2{\sin ^{ - 1}}\left( 0 \right)\]
\[ = {\sin ^{ - 1}}\left( 1 \right) - 2{\sin ^{ - 1}}\left( 0 \right)\]
We know that \[{\sin ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{2},{\sin ^{ - 1}}(0) = 0\]
\[ = \dfrac{\pi }{2} - 2 \times 0\]
\[ = \dfrac{\pi }{2}\] which is equal to R.H.S
So, the value of x is 0 which satisfies the required equation.
$\therefore $ x = 0 is the required value of x.
Note- In such types of questions, just remember some simple trigonometric and inverse trigonometric functions, their values and their properties like $\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta $ , $\cos (2\theta ) = 1 - 2{\sin ^2}\theta $ , $\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta $ , \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{6}\] , \[{\sin ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{2}\] , \[{\sin ^{ - 1}}(0) = 0\] . Also, simplify the expression step by step using them to get the answer.
Complete step-by-step answer:
It is given that, \[{\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \dfrac{\pi }{2}\]
\[ \Rightarrow {\sin ^{ - 1}}(1 - x) = \dfrac{\pi }{2} + 2{\sin ^{ - 1}}x\]
Take sine of both sides
\[ \Rightarrow \sin \left( {{{\sin }^{ - 1}}(1 - x)} \right) = \sin \left( {\dfrac{\pi }{2} + 2{{\sin }^{ - 1}}x} \right)\]
\[ \Rightarrow (1 - x) = \sin \left( {\dfrac{\pi }{2} + 2{{\sin }^{ - 1}}x} \right)\]
We know that, $\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta $
\[ \Rightarrow (1 - x) = \cos \left( {2{{\sin }^{ - 1}}x} \right)\]
Now, we know that $\cos (2\theta ) = 1 - 2{\sin ^2}\theta $
\[ \Rightarrow (1 - x) = 1 - 2{\sin ^2}\left( {{{\sin }^{ - 1}}x} \right)\]
\[ \Rightarrow (1 - x) = 1 - 2\sin \left( {{{\sin }^{ - 1}}x} \right) \times \sin \left( {{{\sin }^{ - 1}}x} \right)\]
We know that $\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta $ for $\theta \in [ - 1,1]$
\[ \Rightarrow (1 - x) = 1 - 2{x^2}\]
\[ \Rightarrow 1 - x - 1 + 2{x^2} = 0\]
\[ \Rightarrow 2{x^2} - x = 0\]
Taking x common
\[ \Rightarrow x(2x - 1) = 0\]
Now, either $x = 0$ or $(2x - 1) = 0$
When $(2x - 1) = 0$
$ \Rightarrow 2x = 1$
Divide both sides by 2
$ \Rightarrow x = \dfrac{1}{2}$
Now, when $x = \dfrac{1}{2};$ check that by substituting that in the equation \[{\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \dfrac{\pi }{2}\]
Substitute in the L.H.S and check whether it gets equal to R.H.S
\[ = {\sin ^{ - 1}}\left( {1 - \dfrac{1}{2}} \right) - 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\]
\[ = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) - 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\]
Now, we know that \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{6}\]
\[ = \dfrac{\pi }{6} - \dfrac{{2\pi }}{6}\]
\[ = - \dfrac{\pi }{6}\] which is not equal to R.H.S
Now, when x = 0, substitute that in the equation \[{\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \dfrac{\pi }{2}\]
Substitute in the L.H.S and check whether it gets equal to R.H.S
\[ = {\sin ^{ - 1}}\left( {1 - 0} \right) - 2{\sin ^{ - 1}}\left( 0 \right)\]
\[ = {\sin ^{ - 1}}\left( 1 \right) - 2{\sin ^{ - 1}}\left( 0 \right)\]
We know that \[{\sin ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{2},{\sin ^{ - 1}}(0) = 0\]
\[ = \dfrac{\pi }{2} - 2 \times 0\]
\[ = \dfrac{\pi }{2}\] which is equal to R.H.S
So, the value of x is 0 which satisfies the required equation.
$\therefore $ x = 0 is the required value of x.
Note- In such types of questions, just remember some simple trigonometric and inverse trigonometric functions, their values and their properties like $\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta $ , $\cos (2\theta ) = 1 - 2{\sin ^2}\theta $ , $\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta $ , \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{6}\] , \[{\sin ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{2}\] , \[{\sin ^{ - 1}}(0) = 0\] . Also, simplify the expression step by step using them to get the answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

