
If Q (0,-1,-3) is the image of the point P in the plane 3x – y + 4z = 2 and R is the point (3, -1, -2), then the area (in square units) of $\Delta PQR$ is:
(a) $\dfrac{\sqrt{64}}{2}$
(b) $\dfrac{\sqrt{91}}{4}$
(c) $2\sqrt{13}$
(d) $\dfrac{\sqrt{91}}{2}$
Answer
594.9k+ views
Hint: First of all, we would use plane equation and coordinates of Q to obtain the coordinates of P. After that, we have three points and by applying the area formula we would evaluate the area of the triangle.
Complete step-by-step answer:
For an equation of plane ax + by + cz = d, the corresponding direction normal vector is (a, b, c).
Hence, the given plane 3x – y + 4z = 2, the direction normal can be given as (3, -1, 4).
The equation of a line passing through a point $\left( {{a}_{1}},{{a}_{2}},{{a}_{3}} \right)$ and parallel to another line whose direction vector is $\left( {{b}_{1}},{{b}_{2}},{{b}_{3}} \right)$ could be given as:
$\dfrac{x-{{a}_{1}}}{{{b}_{1}}}=\dfrac{y-{{a}_{2}}}{{{b}_{2}}}=\dfrac{z-{{a}_{3}}}{{{b}_{3}}}$
So, the equation of a line passing through Q and parallel to direction normal of plane:
$\dfrac{x}{3}=\dfrac{y+1}{-1}=\dfrac{z+3}{4}$
Now let the point A be on the plane which is the mid-point of the line joining PQ. Hence, the coordinates of A in the form of $\lambda $.
$\begin{align}
& \dfrac{x}{3}=\dfrac{y+1}{-1}=\dfrac{z+3}{4}=\lambda \\
& x=3\lambda ,y=-\lambda -1,z=4\lambda -3 \\
& A=\left( 3\lambda ,-\lambda -1,4\lambda -3 \right) \\
\end{align}$
Satisfying the coordinates of A in the equation of plane:
$\begin{align}
& 3\times 3\lambda -\left( -\lambda -1 \right)+4\cdot \left( 4\lambda -3 \right)=2 \\
& 9\lambda +\lambda +1+16\lambda -12=2 \\
& 26\lambda =13 \\
& \lambda =\dfrac{1}{2} \\
\end{align}$
Therefore, the coordinates of A $=\left( \dfrac{3}{2},-\dfrac{3}{2},-1 \right)$.
So, the coordinate of P can be evaluated by using the mid-point formula:
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2},z=\dfrac{{{z}_{1}}+{{z}_{2}}}{2}$
So, we have A$=\left( \dfrac{3}{2},-\dfrac{3}{2},-1 \right)$ as the mid-point of P (x, y, z) and Q (0, -1, -3).
Now, to evaluate coordinates of P:
$\begin{align}
& \dfrac{3}{2}=\dfrac{x}{2},\dfrac{-3}{2}=\dfrac{y-1}{2},-1=\dfrac{z-3}{2} \\
& \therefore x=3,y=-2,z=1 \\
\end{align}$
Therefore, P (3, -2, 1).
So, now we are required to calculate the area of $\Delta PQR$ whose coordinates P (3, -2, 1)
Q (0, -1, -3) and R (3, -1, -2).
The vector formed from two position vectors is:
$\overrightarrow{AB}=position\text{ vector of B }-\text{ }position\text{ vector of A}$
Let two vectors formed from P, Q, R would be:
$\begin{align}
& \overrightarrow{PQ}=\left( 0-3 \right)i+\left( -1+2 \right)j+\left( -3-1 \right)k \\
& \overrightarrow{PQ}=-3i+j-4k \\
& \overrightarrow{QR}=\left( 3-0 \right)i+\left( -1+1 \right)j+\left( -2+3 \right)k \\
& \overrightarrow{QR}=3i+k \\
\end{align}$
As we know that Area of triangle in determinant form for a vector:
$A=\dfrac{1}{2}\times \left| \begin{matrix}
i & j & k \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Area of $\Delta PQR$:
$\begin{align}
& A=\dfrac{1}{2}\times\left| \begin{matrix}
i & j & k \\
-3 & 1 & -4 \\
3 & 0 & 1 \\
\end{matrix} \right| \\
& A=\dfrac{1}{2}\times i\left( 1-0 \right)-j\left( -3+12 \right)+k\left( 0-3 \right) \\
& A=\dfrac{1}{2}\times i-9j-3k \\
& \left| A \right|=\dfrac{\sqrt{91}}{2} \\
\end{align}$
So, the correct answer is option (d).
Note: Alternate solution of this question is by using the distance formula of plane to a point and calculate the distance of point Q and hence calculate the total length of PQ which is twice of QM.
Then, calculate the perpendicular distance RM and finally evaluate the area.
Complete step-by-step answer:
For an equation of plane ax + by + cz = d, the corresponding direction normal vector is (a, b, c).
Hence, the given plane 3x – y + 4z = 2, the direction normal can be given as (3, -1, 4).
The equation of a line passing through a point $\left( {{a}_{1}},{{a}_{2}},{{a}_{3}} \right)$ and parallel to another line whose direction vector is $\left( {{b}_{1}},{{b}_{2}},{{b}_{3}} \right)$ could be given as:
$\dfrac{x-{{a}_{1}}}{{{b}_{1}}}=\dfrac{y-{{a}_{2}}}{{{b}_{2}}}=\dfrac{z-{{a}_{3}}}{{{b}_{3}}}$
So, the equation of a line passing through Q and parallel to direction normal of plane:
$\dfrac{x}{3}=\dfrac{y+1}{-1}=\dfrac{z+3}{4}$
Now let the point A be on the plane which is the mid-point of the line joining PQ. Hence, the coordinates of A in the form of $\lambda $.
$\begin{align}
& \dfrac{x}{3}=\dfrac{y+1}{-1}=\dfrac{z+3}{4}=\lambda \\
& x=3\lambda ,y=-\lambda -1,z=4\lambda -3 \\
& A=\left( 3\lambda ,-\lambda -1,4\lambda -3 \right) \\
\end{align}$
Satisfying the coordinates of A in the equation of plane:
$\begin{align}
& 3\times 3\lambda -\left( -\lambda -1 \right)+4\cdot \left( 4\lambda -3 \right)=2 \\
& 9\lambda +\lambda +1+16\lambda -12=2 \\
& 26\lambda =13 \\
& \lambda =\dfrac{1}{2} \\
\end{align}$
Therefore, the coordinates of A $=\left( \dfrac{3}{2},-\dfrac{3}{2},-1 \right)$.
So, the coordinate of P can be evaluated by using the mid-point formula:
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2},z=\dfrac{{{z}_{1}}+{{z}_{2}}}{2}$
So, we have A$=\left( \dfrac{3}{2},-\dfrac{3}{2},-1 \right)$ as the mid-point of P (x, y, z) and Q (0, -1, -3).
Now, to evaluate coordinates of P:
$\begin{align}
& \dfrac{3}{2}=\dfrac{x}{2},\dfrac{-3}{2}=\dfrac{y-1}{2},-1=\dfrac{z-3}{2} \\
& \therefore x=3,y=-2,z=1 \\
\end{align}$
Therefore, P (3, -2, 1).
So, now we are required to calculate the area of $\Delta PQR$ whose coordinates P (3, -2, 1)
Q (0, -1, -3) and R (3, -1, -2).
The vector formed from two position vectors is:
$\overrightarrow{AB}=position\text{ vector of B }-\text{ }position\text{ vector of A}$
Let two vectors formed from P, Q, R would be:
$\begin{align}
& \overrightarrow{PQ}=\left( 0-3 \right)i+\left( -1+2 \right)j+\left( -3-1 \right)k \\
& \overrightarrow{PQ}=-3i+j-4k \\
& \overrightarrow{QR}=\left( 3-0 \right)i+\left( -1+1 \right)j+\left( -2+3 \right)k \\
& \overrightarrow{QR}=3i+k \\
\end{align}$
As we know that Area of triangle in determinant form for a vector:
$A=\dfrac{1}{2}\times \left| \begin{matrix}
i & j & k \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Area of $\Delta PQR$:
$\begin{align}
& A=\dfrac{1}{2}\times\left| \begin{matrix}
i & j & k \\
-3 & 1 & -4 \\
3 & 0 & 1 \\
\end{matrix} \right| \\
& A=\dfrac{1}{2}\times i\left( 1-0 \right)-j\left( -3+12 \right)+k\left( 0-3 \right) \\
& A=\dfrac{1}{2}\times i-9j-3k \\
& \left| A \right|=\dfrac{\sqrt{91}}{2} \\
\end{align}$
So, the correct answer is option (d).
Note: Alternate solution of this question is by using the distance formula of plane to a point and calculate the distance of point Q and hence calculate the total length of PQ which is twice of QM.
Then, calculate the perpendicular distance RM and finally evaluate the area.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

