
If \[P\left( A \right)=\dfrac{1}{4}\], \[P\left( B \right)=\dfrac{2}{5}\] and \[P\left( A\cup B \right)=\dfrac{1}{2}\], find the value of the following:
a. \[P\left( A\cap B \right)\]
b. \[P\left( A\cap B' \right)\]
c. \[P\left( A'\cap B \right)\]
d. \[P\left( A'\cup B' \right)\]
e. \[P\left( A'\cap B' \right)\]
Answer
587.4k+ views
Hint: The value of the given expressions is calculated using theorems of probability. The addition and multiplication theorems of probability are used to obtain some important results which can be used as a direct formula for calculating the values of the given expressions.
\[P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)\]
\[P\left( A\cap B' \right)=P\left( A \right)-P\left( A\cap B \right)\]
\[P\left( A'\cap B \right)=P\left( B \right)-P\left( A\cap B \right)\]
\[P\left( A'\cup B' \right)=1-P\left( A\cap B \right)\]
\[P\left( A\cup B \right)=1-P\left( A'\cap B' \right)\]
Complete step-by-step answer:
When two events cannot occur simultaneously, they are called mutually exclusive events.
If A and B were mutually exclusive events, \[P\left( A\cap B \right)\] would have been zero. Therefore, \[P\left( A\cup B \right)\] would have been calculated as:
\[P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)\]
When two events are independent, that is, the occurrence of one event does not affect the occurrence or non-occurrence of the other event, then,
\[P\left( A\cap B \right)\] can be calculated as:
\[P\left( A\cap B \right)=P\left( A \right)\cdot P\left( B \right)\]
Given, \[P\left( A \right)=\dfrac{1}{4}\], \[P\left( B \right)=\dfrac{2}{5}\] and \[P\left( A\cup B \right)=\dfrac{1}{2}\], therefore, \[P\left( A\cap B \right)\] can be calculated as:
$P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right) $
$P\left( A\cap B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cup B \right) $
$P\left( A\cap B \right)=\dfrac{1}{4}+\dfrac{2}{5}-\dfrac{1}{2} $
$P\left( A\cap B \right)=\dfrac{5+8-10}{20} $
$P\left( A\cap B \right)=\dfrac{3}{20} $
\[P\left( A\cap B' \right)\] can be calculated as:
$P\left( A\cap B' \right)=P\left( A \right)-P\left( A\cap B \right) $
$P\left( A\cap B' \right)=\dfrac{1}{4}-\dfrac{3}{20} $
$P\left( A\cap B' \right)=\dfrac{5-3}{20} $
$P\left( A\cap B' \right)=\dfrac{2}{20} $
$P\left( A\cap B' \right)=\dfrac{1}{10} $
\[P\left( A'\cap B \right)\] can be calculated as:
$P\left( A'\cap B \right)=P\left( B \right)-P\left( A\cap B \right) $
$P\left( A'\cap B \right)=\dfrac{2}{5}-\dfrac{3}{20} $
$P\left( A'\cap B \right)=\dfrac{8-3}{20} $
$P\left( A'\cap B \right)=\dfrac{5}{20} $
$P\left( A'\cap B \right)=\dfrac{1}{4} $
\[P\left( A'\cup B' \right)\]is calculated as:
$P\left( A'\cup B' \right)=1-P\left( A\cap B \right) $
$P\left( A'\cup B' \right)=1-\dfrac{3}{20} $
$P\left( A'\cup B' \right)=\dfrac{17}{20} $
\[P\left( A'\cap B' \right)\] is calculated as:
$P\left( A\cup B \right)=1-P\left( A'\cap B' \right) $
$P\left( A'\cap B' \right)=1-P\left( A\cup B \right) $
$P\left( A'\cap B' \right)=1-\dfrac{1}{2} $
$P\left( A'\cap B' \right)=\dfrac{1}{2} $
Note: The value of \[P\left( A'\cap B' \right)\] and \[P\left( A'\cup B' \right)\] is verified using \[P\left( A'\cup B' \right)=P\left( A' \right)+P\left( B' \right)-P\left( A'\cap B' \right)\] as follows:
$\left( A'\cup B' \right)=P\left( A' \right)+P\left( B' \right)-P\left( A'\cap B' \right) $
$\dfrac{17}{20}=\dfrac{3}{4}+\dfrac{3}{5}-\dfrac{1}{2} $
$\dfrac{17}{20}=\dfrac{15+12-10}{20} $
$\dfrac{17}{20}=\dfrac{17}{20} $
Since, the term on the left hand side is equal to the term on the right hand side, therefore, the calculated values are correct.
We can also check the values of \[P\left( A'\cap B \right)\] and \[P\left( A\cap B' \right)\]using the following identity,
$\left( A\cap B' \right)+P\left( A'\cap B \right)=P\left( A\cup B \right)-P\left( A\cap B \right) $
$\dfrac{1}{10}+\dfrac{1}{4}=\dfrac{1}{2}-\dfrac{3}{20} $
$\dfrac{2+5}{20}=\dfrac{10-3}{20} $
$\dfrac{7}{20}=\dfrac{7}{20} $
Since, the term on the left hand side is equal to the term on the right hand side, therefore, the calculated values are correct.
\[P\left( A\cup B \right)\] can also be written as \[P\left( A+B \right)\] and \[P\left( A\cap B \right)\] can be written as \[P\left( AB \right)\]
\[P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)\]
\[P\left( A\cap B' \right)=P\left( A \right)-P\left( A\cap B \right)\]
\[P\left( A'\cap B \right)=P\left( B \right)-P\left( A\cap B \right)\]
\[P\left( A'\cup B' \right)=1-P\left( A\cap B \right)\]
\[P\left( A\cup B \right)=1-P\left( A'\cap B' \right)\]
Complete step-by-step answer:
When two events cannot occur simultaneously, they are called mutually exclusive events.
If A and B were mutually exclusive events, \[P\left( A\cap B \right)\] would have been zero. Therefore, \[P\left( A\cup B \right)\] would have been calculated as:
\[P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)\]
When two events are independent, that is, the occurrence of one event does not affect the occurrence or non-occurrence of the other event, then,
\[P\left( A\cap B \right)\] can be calculated as:
\[P\left( A\cap B \right)=P\left( A \right)\cdot P\left( B \right)\]
Given, \[P\left( A \right)=\dfrac{1}{4}\], \[P\left( B \right)=\dfrac{2}{5}\] and \[P\left( A\cup B \right)=\dfrac{1}{2}\], therefore, \[P\left( A\cap B \right)\] can be calculated as:
$P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right) $
$P\left( A\cap B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cup B \right) $
$P\left( A\cap B \right)=\dfrac{1}{4}+\dfrac{2}{5}-\dfrac{1}{2} $
$P\left( A\cap B \right)=\dfrac{5+8-10}{20} $
$P\left( A\cap B \right)=\dfrac{3}{20} $
\[P\left( A\cap B' \right)\] can be calculated as:
$P\left( A\cap B' \right)=P\left( A \right)-P\left( A\cap B \right) $
$P\left( A\cap B' \right)=\dfrac{1}{4}-\dfrac{3}{20} $
$P\left( A\cap B' \right)=\dfrac{5-3}{20} $
$P\left( A\cap B' \right)=\dfrac{2}{20} $
$P\left( A\cap B' \right)=\dfrac{1}{10} $
\[P\left( A'\cap B \right)\] can be calculated as:
$P\left( A'\cap B \right)=P\left( B \right)-P\left( A\cap B \right) $
$P\left( A'\cap B \right)=\dfrac{2}{5}-\dfrac{3}{20} $
$P\left( A'\cap B \right)=\dfrac{8-3}{20} $
$P\left( A'\cap B \right)=\dfrac{5}{20} $
$P\left( A'\cap B \right)=\dfrac{1}{4} $
\[P\left( A'\cup B' \right)\]is calculated as:
$P\left( A'\cup B' \right)=1-P\left( A\cap B \right) $
$P\left( A'\cup B' \right)=1-\dfrac{3}{20} $
$P\left( A'\cup B' \right)=\dfrac{17}{20} $
\[P\left( A'\cap B' \right)\] is calculated as:
$P\left( A\cup B \right)=1-P\left( A'\cap B' \right) $
$P\left( A'\cap B' \right)=1-P\left( A\cup B \right) $
$P\left( A'\cap B' \right)=1-\dfrac{1}{2} $
$P\left( A'\cap B' \right)=\dfrac{1}{2} $
Note: The value of \[P\left( A'\cap B' \right)\] and \[P\left( A'\cup B' \right)\] is verified using \[P\left( A'\cup B' \right)=P\left( A' \right)+P\left( B' \right)-P\left( A'\cap B' \right)\] as follows:
$\left( A'\cup B' \right)=P\left( A' \right)+P\left( B' \right)-P\left( A'\cap B' \right) $
$\dfrac{17}{20}=\dfrac{3}{4}+\dfrac{3}{5}-\dfrac{1}{2} $
$\dfrac{17}{20}=\dfrac{15+12-10}{20} $
$\dfrac{17}{20}=\dfrac{17}{20} $
Since, the term on the left hand side is equal to the term on the right hand side, therefore, the calculated values are correct.
We can also check the values of \[P\left( A'\cap B \right)\] and \[P\left( A\cap B' \right)\]using the following identity,
$\left( A\cap B' \right)+P\left( A'\cap B \right)=P\left( A\cup B \right)-P\left( A\cap B \right) $
$\dfrac{1}{10}+\dfrac{1}{4}=\dfrac{1}{2}-\dfrac{3}{20} $
$\dfrac{2+5}{20}=\dfrac{10-3}{20} $
$\dfrac{7}{20}=\dfrac{7}{20} $
Since, the term on the left hand side is equal to the term on the right hand side, therefore, the calculated values are correct.
\[P\left( A\cup B \right)\] can also be written as \[P\left( A+B \right)\] and \[P\left( A\cap B \right)\] can be written as \[P\left( AB \right)\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

