
If p varies inversely as q, and p = 7 when q = 3, find p when $q = 2\dfrac{1}{3}$.
Answer
616.5k+ views
Hint: In this question as $p$ varies inversely as $q$ then let $p = \dfrac{k}{q}$, where $k$ is a constant. Use this concept to solve the question.
Complete step-by-step answer:
Given that $p$ varies inversely as $q$ then we can say that,
$p = \dfrac{k}{q}$, where $k$ is a constant.
We have been given in the question that –
As $p = 7$ when $q = 3$, so this will satisfy the equation $p = \dfrac{k}{q}$,
Therefore, keeping $p = 7$ and $q = 3$ in $p = \dfrac{k}{q}$, we get-
$
7 = \dfrac{k}{3} \\
\Rightarrow k = 21 \\
$
Now put the value of $k$ in $p = \dfrac{k}{q}$, we get-
$p = \dfrac{{21}}{q}$
Now we have to find the value of $p$, when the value of $q = 2\dfrac{1}{3}$.
So, substituting these values in $p = \dfrac{{21}}{q}$, we get-
$p = \dfrac{{21}}{{2\dfrac{1}{3}}} = \dfrac{{21}}{{\dfrac{7}{3}}} = \dfrac{{21}}{7} \times 3 = 9$
Hence, after solving the question, we get the value of $p = 9$.
Note: Whenever such types of questions appear, then always form an equation according to the relation between the two given variables, and then solve by substituting the values of the variables which are provided in the question and then you can reach the solution easily.
Complete step-by-step answer:
Given that $p$ varies inversely as $q$ then we can say that,
$p = \dfrac{k}{q}$, where $k$ is a constant.
We have been given in the question that –
As $p = 7$ when $q = 3$, so this will satisfy the equation $p = \dfrac{k}{q}$,
Therefore, keeping $p = 7$ and $q = 3$ in $p = \dfrac{k}{q}$, we get-
$
7 = \dfrac{k}{3} \\
\Rightarrow k = 21 \\
$
Now put the value of $k$ in $p = \dfrac{k}{q}$, we get-
$p = \dfrac{{21}}{q}$
Now we have to find the value of $p$, when the value of $q = 2\dfrac{1}{3}$.
So, substituting these values in $p = \dfrac{{21}}{q}$, we get-
$p = \dfrac{{21}}{{2\dfrac{1}{3}}} = \dfrac{{21}}{{\dfrac{7}{3}}} = \dfrac{{21}}{7} \times 3 = 9$
Hence, after solving the question, we get the value of $p = 9$.
Note: Whenever such types of questions appear, then always form an equation according to the relation between the two given variables, and then solve by substituting the values of the variables which are provided in the question and then you can reach the solution easily.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


