
If p varies inversely as q, and p = 7 when q = 3, find p when $q = 2\dfrac{1}{3}$.
Answer
519k+ views
Hint: In this question as $p$ varies inversely as $q$ then let $p = \dfrac{k}{q}$, where $k$ is a constant. Use this concept to solve the question.
Complete step-by-step answer:
Given that $p$ varies inversely as $q$ then we can say that,
$p = \dfrac{k}{q}$, where $k$ is a constant.
We have been given in the question that –
As $p = 7$ when $q = 3$, so this will satisfy the equation $p = \dfrac{k}{q}$,
Therefore, keeping $p = 7$ and $q = 3$ in $p = \dfrac{k}{q}$, we get-
$
7 = \dfrac{k}{3} \\
\Rightarrow k = 21 \\
$
Now put the value of $k$ in $p = \dfrac{k}{q}$, we get-
$p = \dfrac{{21}}{q}$
Now we have to find the value of $p$, when the value of $q = 2\dfrac{1}{3}$.
So, substituting these values in $p = \dfrac{{21}}{q}$, we get-
$p = \dfrac{{21}}{{2\dfrac{1}{3}}} = \dfrac{{21}}{{\dfrac{7}{3}}} = \dfrac{{21}}{7} \times 3 = 9$
Hence, after solving the question, we get the value of $p = 9$.
Note: Whenever such types of questions appear, then always form an equation according to the relation between the two given variables, and then solve by substituting the values of the variables which are provided in the question and then you can reach the solution easily.
Complete step-by-step answer:
Given that $p$ varies inversely as $q$ then we can say that,
$p = \dfrac{k}{q}$, where $k$ is a constant.
We have been given in the question that –
As $p = 7$ when $q = 3$, so this will satisfy the equation $p = \dfrac{k}{q}$,
Therefore, keeping $p = 7$ and $q = 3$ in $p = \dfrac{k}{q}$, we get-
$
7 = \dfrac{k}{3} \\
\Rightarrow k = 21 \\
$
Now put the value of $k$ in $p = \dfrac{k}{q}$, we get-
$p = \dfrac{{21}}{q}$
Now we have to find the value of $p$, when the value of $q = 2\dfrac{1}{3}$.
So, substituting these values in $p = \dfrac{{21}}{q}$, we get-
$p = \dfrac{{21}}{{2\dfrac{1}{3}}} = \dfrac{{21}}{{\dfrac{7}{3}}} = \dfrac{{21}}{7} \times 3 = 9$
Hence, after solving the question, we get the value of $p = 9$.
Note: Whenever such types of questions appear, then always form an equation according to the relation between the two given variables, and then solve by substituting the values of the variables which are provided in the question and then you can reach the solution easily.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
When Sambhaji Maharaj died a 11 February 1689 b 11 class 8 social science CBSE

How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

Write the smallest number divisible by both 306 and class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
