Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If $P = (0,1,0)$ and $Q = (0,0,1)$ then the projection of $PQ$ on the plane $x + y + z = 3$ is 
A. $2$
B. $\sqrt 2 $
C. $3$
D. $\sqrt 3 $

Answer
VerifiedVerified
563.4k+ views
Hint: Projection is the length on a base that is formed by a line due to perpendicular light falling on the given line. Here $P = (0,1,0)$ and $Q = (0,0,1)$ is given so find out the vector $\overrightarrow {PQ} $ and use the projection method of the vector using the dot-product.  

Complete step-by-step answer:
$P = (0,1,0)$ and $Q = (0,0,1)$ asking about the projection of $PQ$ on the plane $x + y + z = 3$ .   
Since position vector of $P = (0,1,0)$ and $Q = (0,0,1)$ 
Now, find \[\overrightarrow {PQ}  = \overrightarrow Q  - \overrightarrow P \]
$  \therefore \overrightarrow {PQ}  = (0 - 0)\widehat i + (0 - 1)\widehat j + (1 - 0)\widehat k $
$   =  - \widehat j + \widehat k $
So, now, find out the magnitude of vector $\overrightarrow {PQ} $
$\therefore \left| {\overrightarrow {PQ} } \right| = \sqrt {{{( - 1)}^2} + {{(1)}^2}}  = \sqrt 2 $
Now, equation of plane is given $x + y + z = 3$ so, write the 
Normal vector $\overrightarrow n  = \overrightarrow i  + \overrightarrow j  + \overrightarrow k $
Also find magnitude $\left| {\overrightarrow n } \right| = \sqrt {{{(1)}^2} + {{(1)}^2} + {{(1)}^2}}  = \sqrt 3 $
Now, taking dot product of $\overrightarrow {PQ} $ with $\overrightarrow n $ , then
$\because \overrightarrow {PQ}  \cdot \overrightarrow n  = ( - \widehat j + \widehat k) \cdot (i + \widehat j + \widehat k) $
$\Rightarrow \left| {\overrightarrow {PQ} } \right|\left| {\overrightarrow n } \right|\cos \theta  =  - 1 + 1$
$ \Rightarrow \sqrt 2 \sqrt 3 \cos \theta  = 0 $
$ \Rightarrow \cos \theta  = 0 $
$ \therefore \theta  = \dfrac{\pi }{2}  $
Now, finally calculate the projection of $\overrightarrow {PQ} $ on the plane $x + y + z = 3$ 
$\therefore $ Projection = $\left| {\overrightarrow {PQ} } \right|\times \cos (90 - \theta )$
$  = \sqrt 2 \sin \theta (\because \theta  = \dfrac{\pi }{2})$
$  = \sqrt 2  \times 1  $
$ = \sqrt 2 $ units.
Hence, the projection of $PQ$ on the plane $x + y + z = 3$ is $\sqrt 2 $ units.
So, the correct answer is “Option B”.

Note: When we take dot product of $\overrightarrow {PQ} $ with normal vector $\overrightarrow n $ then the angle that is formed is with the normal vector $\widehat n$ but when we find with projection with plane then the value of angle of $\overrightarrow {PQ} $ with plane be $(90 - \theta )$ . So, a student should not be confused with these angles.