
If \[\overset{\to }{\mathop{a}}\,,\overset{\to }{\mathop{b}}\,,\overset{\to }{\mathop{c}}\,\]are three mutually perpendicular vectors, then the vector which is equally inclined to three vectors are
(a) \[\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\]
(b) \[\dfrac{\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}+\dfrac{\overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{b}}\, \right|}+\dfrac{\overset{\to }{\mathop{c}}\,}{\left| \overset{\to }{\mathop{c}}\, \right|}\]
(c) \[\dfrac{\overset{\to }{\mathop{a}}\,}{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}}+\dfrac{\overset{\to }{\mathop{b}}\,}{{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}}+\dfrac{\overset{\to }{\mathop{c}}\,}{{{\left| \overset{\to }{\mathop{c}}\, \right|}^{2}}}\]
(d) \[\left| \overset{\to }{\mathop{a}}\, \right|\overset{\to }{\mathop{a}}\,-\left| \overset{\to }{\mathop{b}}\, \right|\overset{\to }{\mathop{b}}\,+\left| \overset{\to }{\mathop{c}}\, \right|\overset{\to }{\mathop{c}}\,\]
Answer
584.4k+ views
Hint: Find the relation between vectors \[\overset{\to }{\mathop{a}}\,,\overset{\to }{\mathop{b}}\,\]and \[\overset{\to }{\mathop{c}}\,\] in case of being mutually perpendicular. Assume \[\left| \overset{\to }{\mathop{a}}\, \right|=\left| \overset{\to }{\mathop{b}}\, \right|=\left| \overset{\to }{\mathop{c}}\, \right|\] is equal to a constant. Find the sum of square of \[\overset{\to }{\mathop{a}}\,,\overset{\to }{\mathop{b}}\,\]and\[\overset{\to }{\mathop{c}}\,\]. Use the formula to find the angle between vector\[\overset{\to }{\mathop{a}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\], \[\overset{\to }{\mathop{b}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]and\[\overset{\to }{\mathop{c}}\,\]and\[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]. Find the vector which is equally inclined.
Complete step by step answer:
Given to us are the three vectors \[\overset{\to }{\mathop{a}}\,,\overset{\to }{\mathop{b}}\,\]and \[\overset{\to }{\mathop{c}}\,\]which are mutually perpendicular to each other.
Two vectors \[\overset{\to }{\mathop{a}}\,\]and \[\overset{\to }{\mathop{b}}\,\]whose dot product \[\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=0\]are said to be orthogonal. Therefore, the vectors \[\overset{\to }{\mathop{a}}\,\]and \[\overset{\to }{\mathop{b}}\,\]are mutually perpendicular. Similarly, dot product of vector \[\overset{\to }{\mathop{b}}\,\]and \[\overset{\to }{\mathop{c}}\,\], is 0, and so, they are mutually perpendicular.
\[\begin{align}
& \Rightarrow \overset{\to }{\mathop{a}}\,\overset{\to }{\mathop{.b}}\,=0,\overset{\to }{\mathop{b}}\,\overset{\to }{\mathop{.c}}\,=0,\overset{\to }{\mathop{c}}\,\overset{\to }{\mathop{.a}}\,=0 \\
& \Rightarrow \overset{\to }{\mathop{a}}\,\overset{\to }{\mathop{.b}}\,=\overset{\to }{\mathop{b}}\,\overset{\to }{\mathop{.c}}\,=\overset{\to }{\mathop{c}}\,\overset{\to }{\mathop{.a}}\,=0-(1) \\
\end{align}\]
Now, let us consider that\[\left| \overset{\to }{\mathop{a}}\, \right|=\left| \overset{\to }{\mathop{b}}\, \right|=\left| \overset{\to }{\mathop{c}}\, \right|=\lambda \], where \[\lambda \]is a constant.
We know the formula, \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)\].
\[\therefore \]The value of \[{{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}\]will be,
\[{{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}={{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{c}}\, \right|}^{2}}+2\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\,+\overset{\to }{\mathop{c}}\,.\overset{\to }{\mathop{a}}\, \right)\]
We know from equation (1) that\[\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\,+\overset{\to }{\mathop{c}}\,.\overset{\to }{\mathop{a}}\,=0\].
\[\begin{align}
& {{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}={{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{c}}\, \right|}^{2}}+2\left( 0+0+0 \right) \\
& {{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}={{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{c}}\, \right|}^{2}}+2\times 0 \\
& {{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}={{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{c}}\, \right|}^{2}} \\
\end{align}\]
Let us substitute \[\left| \overset{\to }{\mathop{a}}\, \right|=\left| \overset{\to }{\mathop{b}}\, \right|=\left| \overset{\to }{\mathop{c}}\, \right|=\lambda \]on the RHS of the expression.
\[\begin{align}
& {{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}={{\lambda }^{2}}+{{\lambda }^{2}}+{{\lambda }^{2}} \\
& {{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}=3{{\lambda }^{2}} \\
\end{align}\]
Taking square root on both sides,
\[\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|=\sqrt{3}\lambda \].
Now, let us find the angle between \[\overset{\to }{\mathop{a}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\].
The formula for find the angle between the two vectors is,
\[\cos \alpha =\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|.\left| \overset{\to }{\mathop{b}}\, \right|}\].
The cosine of the angle between 2 vectors is equal to the dot product of this vector divided by the product of vector magnitude.
Here, let us take the two vectors as \[\overset{\to }{\mathop{a}}\,\]and\[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\].
\[\therefore \cos \alpha =\dfrac{\overset{\to }{\mathop{a}}\,.\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)}{\left| \overset{\to }{\mathop{a}}\, \right|.\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}\]
Let us take dot product in the numerator. Substitute the value of \[\overset{\to }{\mathop{a}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]in the denominator.
\[\therefore \cos \alpha =\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{c}}\,}{\lambda \times \sqrt{3}\lambda }\]
We know, \[\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{c}}\,=0\]and \[{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}={{\lambda }^{2}}\].
\[\begin{align}
& \therefore \cos \alpha =\dfrac{{{\lambda }^{2}}}{\sqrt{3}{{\lambda }^{2}}}=\dfrac{1}{\sqrt{3}} \\
& \therefore \alpha ={{\cos }^{-1}}\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Similarly, we can find the angle between \[\overset{\to }{\mathop{b}}\,\]and\[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\].\[\begin{align}
& \therefore \cos \alpha =\dfrac{\overset{\to }{\mathop{b}}\,.\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)}{\left| \overset{\to }{\mathop{b}}\, \right|.\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}=\dfrac{\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\,}{\lambda \times \sqrt{3}\lambda } \\
& =\dfrac{{{\lambda }^{2}}}{\sqrt{3}{{\lambda }^{2}}}=\dfrac{1}{\sqrt{3}} \\
\end{align}\]
We know, \[\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{a}}\,=0,\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\,=0\], so above equation can be written as,
\[\therefore \cos \alpha =\dfrac{{{\lambda }^{2}}}{\sqrt{3}{{\lambda }^{2}}}=\dfrac{1}{\sqrt{3}}\]
\[\therefore \alpha ={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\]
Similarly, the angle between \[\overset{\to }{\mathop{c}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]is\[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
Hence, angle between \[\overset{\to }{\mathop{a}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]=\[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
Angle between \[\overset{\to }{\mathop{b}}\,\]and\[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]=\[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
Angle between \[\overset{\to }{\mathop{c}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]=\[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
\[\therefore \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\]is equally inclined with \[\overset{\to }{\mathop{a}}\,,\overset{\to }{\mathop{b}}\,,\overset{\to }{\mathop{c}}\,\].
So, the correct answer is “Option A”.
Note: The dot product between 2 unit vectors and itself is simple to compute. If the vectors are of length one, then the dot product of three vectors \[\overset{\to }{\mathop{i}}\,,\overset{\to }{\mathop{j}}\,\]and \[\overset{\to }{\mathop{k}}\,\]becomes,
\[\overset{\to }{\mathop{i}}\,.\overset{\to }{\mathop{i}}\,=\overset{\to }{\mathop{j}}\,.\overset{\to }{\mathop{j}}\,=\overset{\to }{\mathop{k}}\,.\overset{\to }{\mathop{k}}\,=1\].
If the vectors are of length a, then the dot product becomes,
\[\overset{\to }{\mathop{i}}\,.\overset{\to }{\mathop{i}}\,=\overset{\to }{\mathop{j}}\,.\overset{\to }{\mathop{j}}\,=\overset{\to }{\mathop{k}}\,.\overset{\to }{\mathop{k}}\,=a\]
Complete step by step answer:
Given to us are the three vectors \[\overset{\to }{\mathop{a}}\,,\overset{\to }{\mathop{b}}\,\]and \[\overset{\to }{\mathop{c}}\,\]which are mutually perpendicular to each other.
Two vectors \[\overset{\to }{\mathop{a}}\,\]and \[\overset{\to }{\mathop{b}}\,\]whose dot product \[\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=0\]are said to be orthogonal. Therefore, the vectors \[\overset{\to }{\mathop{a}}\,\]and \[\overset{\to }{\mathop{b}}\,\]are mutually perpendicular. Similarly, dot product of vector \[\overset{\to }{\mathop{b}}\,\]and \[\overset{\to }{\mathop{c}}\,\], is 0, and so, they are mutually perpendicular.
\[\begin{align}
& \Rightarrow \overset{\to }{\mathop{a}}\,\overset{\to }{\mathop{.b}}\,=0,\overset{\to }{\mathop{b}}\,\overset{\to }{\mathop{.c}}\,=0,\overset{\to }{\mathop{c}}\,\overset{\to }{\mathop{.a}}\,=0 \\
& \Rightarrow \overset{\to }{\mathop{a}}\,\overset{\to }{\mathop{.b}}\,=\overset{\to }{\mathop{b}}\,\overset{\to }{\mathop{.c}}\,=\overset{\to }{\mathop{c}}\,\overset{\to }{\mathop{.a}}\,=0-(1) \\
\end{align}\]
Now, let us consider that\[\left| \overset{\to }{\mathop{a}}\, \right|=\left| \overset{\to }{\mathop{b}}\, \right|=\left| \overset{\to }{\mathop{c}}\, \right|=\lambda \], where \[\lambda \]is a constant.
We know the formula, \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)\].
\[\therefore \]The value of \[{{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}\]will be,
\[{{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}={{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{c}}\, \right|}^{2}}+2\left( \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\,+\overset{\to }{\mathop{c}}\,.\overset{\to }{\mathop{a}}\, \right)\]
We know from equation (1) that\[\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\,+\overset{\to }{\mathop{c}}\,.\overset{\to }{\mathop{a}}\,=0\].
\[\begin{align}
& {{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}={{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{c}}\, \right|}^{2}}+2\left( 0+0+0 \right) \\
& {{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}={{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{c}}\, \right|}^{2}}+2\times 0 \\
& {{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}={{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{c}}\, \right|}^{2}} \\
\end{align}\]
Let us substitute \[\left| \overset{\to }{\mathop{a}}\, \right|=\left| \overset{\to }{\mathop{b}}\, \right|=\left| \overset{\to }{\mathop{c}}\, \right|=\lambda \]on the RHS of the expression.
\[\begin{align}
& {{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}={{\lambda }^{2}}+{{\lambda }^{2}}+{{\lambda }^{2}} \\
& {{\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}^{2}}=3{{\lambda }^{2}} \\
\end{align}\]
Taking square root on both sides,
\[\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|=\sqrt{3}\lambda \].
Now, let us find the angle between \[\overset{\to }{\mathop{a}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\].
The formula for find the angle between the two vectors is,
\[\cos \alpha =\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|.\left| \overset{\to }{\mathop{b}}\, \right|}\].
The cosine of the angle between 2 vectors is equal to the dot product of this vector divided by the product of vector magnitude.
Here, let us take the two vectors as \[\overset{\to }{\mathop{a}}\,\]and\[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\].
\[\therefore \cos \alpha =\dfrac{\overset{\to }{\mathop{a}}\,.\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)}{\left| \overset{\to }{\mathop{a}}\, \right|.\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}\]
Let us take dot product in the numerator. Substitute the value of \[\overset{\to }{\mathop{a}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]in the denominator.
\[\therefore \cos \alpha =\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{c}}\,}{\lambda \times \sqrt{3}\lambda }\]
We know, \[\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{c}}\,=0\]and \[{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}={{\lambda }^{2}}\].
\[\begin{align}
& \therefore \cos \alpha =\dfrac{{{\lambda }^{2}}}{\sqrt{3}{{\lambda }^{2}}}=\dfrac{1}{\sqrt{3}} \\
& \therefore \alpha ={{\cos }^{-1}}\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Similarly, we can find the angle between \[\overset{\to }{\mathop{b}}\,\]and\[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\].\[\begin{align}
& \therefore \cos \alpha =\dfrac{\overset{\to }{\mathop{b}}\,.\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)}{\left| \overset{\to }{\mathop{b}}\, \right|.\left| \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right|}=\dfrac{\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\,}{\lambda \times \sqrt{3}\lambda } \\
& =\dfrac{{{\lambda }^{2}}}{\sqrt{3}{{\lambda }^{2}}}=\dfrac{1}{\sqrt{3}} \\
\end{align}\]
We know, \[\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{a}}\,=0,\overset{\to }{\mathop{b}}\,.\overset{\to }{\mathop{c}}\,=0\], so above equation can be written as,
\[\therefore \cos \alpha =\dfrac{{{\lambda }^{2}}}{\sqrt{3}{{\lambda }^{2}}}=\dfrac{1}{\sqrt{3}}\]
\[\therefore \alpha ={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\]
Similarly, the angle between \[\overset{\to }{\mathop{c}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]is\[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
Hence, angle between \[\overset{\to }{\mathop{a}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]=\[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
Angle between \[\overset{\to }{\mathop{b}}\,\]and\[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]=\[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
Angle between \[\overset{\to }{\mathop{c}}\,\]and \[\left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\, \right)\]=\[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)\].
\[\therefore \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\]is equally inclined with \[\overset{\to }{\mathop{a}}\,,\overset{\to }{\mathop{b}}\,,\overset{\to }{\mathop{c}}\,\].
So, the correct answer is “Option A”.
Note: The dot product between 2 unit vectors and itself is simple to compute. If the vectors are of length one, then the dot product of three vectors \[\overset{\to }{\mathop{i}}\,,\overset{\to }{\mathop{j}}\,\]and \[\overset{\to }{\mathop{k}}\,\]becomes,
\[\overset{\to }{\mathop{i}}\,.\overset{\to }{\mathop{i}}\,=\overset{\to }{\mathop{j}}\,.\overset{\to }{\mathop{j}}\,=\overset{\to }{\mathop{k}}\,.\overset{\to }{\mathop{k}}\,=1\].
If the vectors are of length a, then the dot product becomes,
\[\overset{\to }{\mathop{i}}\,.\overset{\to }{\mathop{i}}\,=\overset{\to }{\mathop{j}}\,.\overset{\to }{\mathop{j}}\,=\overset{\to }{\mathop{k}}\,.\overset{\to }{\mathop{k}}\,=a\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

