
If \[\overset{\to }{\mathop{A}}\,=3i+j+2k\] and \[\overset{\to }{\mathop{B}}\,=2i-2j+4k\], \[\theta \] is the angle between the two vectors then \[\sin \theta \] is equal to
A.\[\dfrac{2}{3}\]
B.\[\dfrac{2}{\sqrt{3}}\]
C.\[\dfrac{2}{\sqrt{7}}\]
D.\[\dfrac{2}{\sqrt{13}}\]
Answer
516.6k+ views
Hint:In this we have to find the angle between the given two vectors and we have to find the value of \[\sin \theta \] from the angle between them. We know that the formula for the angle between two vectors is \[\cos \theta =\dfrac{\overset{\to }{\mathop{a}}\,\cdot \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|}\]. We can find the value of the cosine from the formula, we can then substitute the cosine value in the formula \[\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }\], to get the value of \[\sin \theta \].
Complete step by step answer:
Here we have to find the value of \[\sin \theta \] from the given two vectors,
We know that the given two vectors are,
\[\overset{\to }{\mathop{A}}\,=3i+j+2k\] and \[\overset{\to }{\mathop{B}}\,=2i-2j+4k\]
We can now write the vectors in the form,
\[\overset{\to }{\mathop{a}}\,=3\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,+2\overset{\wedge }{\mathop{k}}\,\]
\[\overset{\to }{\mathop{b}}\,=2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+4\overset{\wedge }{\mathop{k}}\,\]
We also know that the formula for the angle between two vectors is
\[\cos \theta =\dfrac{\overset{\to }{\mathop{a}}\,\cdot \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|}\]
We can now substitute the vector values in the above formula and we can write the determinant in denominator as,
\[\Rightarrow \cos \theta =\dfrac{\left( 3\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,+2\overset{\wedge }{\mathop{k}}\, \right)\cdot \left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+4\overset{\wedge }{\mathop{k}}\, \right)}{\sqrt{{{3}^{2}}+{{1}^{2}}+{{2}^{2}}}\times \sqrt{{{2}^{2}}+{{\left( -2 \right)}^{2}}+{{4}^{2}}}}\]
\[\Rightarrow \cos \theta =\dfrac{\left( 3\overset{\wedge }{\mathop{i}}\, \right)\left( 2\overset{\wedge }{\mathop{i}}\, \right)\times \left( \overset{\wedge }{\mathop{j}}\, \right)\left( -2\overset{\wedge }{\mathop{j}}\, \right)\times \left( 2\overset{\wedge }{\mathop{k}}\, \right)\left( 4\overset{\wedge }{\mathop{k}}\, \right)}{\sqrt{{{3}^{2}}+{{1}^{2}}+{{2}^{2}}}\times \sqrt{{{2}^{2}}+{{\left( -2 \right)}^{2}}+{{4}^{2}}}}\]
\[\because \overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{i}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{k}}\,=1,\overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{k}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{i}}\,=0\]
We can now simplify the above step, we get
\[\Rightarrow \cos \theta =\dfrac{6-2+8}{\sqrt{9+1+4}\sqrt{4+4+16}}\]
We can now simplify the above step further, we get
\[\Rightarrow \cos \theta =\dfrac{12}{\sqrt{14}\sqrt{24}}=\dfrac{3}{\sqrt{21}}\]
We know that \[\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }\], we can now substitute the above cosine value in this formula, we get
\[\Rightarrow \sin \theta =\sqrt{1-{{\left( \dfrac{3}{\sqrt{21}} \right)}^{2}}}\]
We can now simplify the above step, we get
\[\Rightarrow \sin \theta =\sqrt{1-\dfrac{9}{21}}=\sqrt{\dfrac{12}{21}}=\sqrt{\dfrac{4}{7}}=\dfrac{2}{\sqrt{7}}\]
So, the correct answer is “Option C”.
Note: We should always remember that the formula to find the angle between two vectors is \[\cos \theta =\dfrac{\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|}\], we should also remember that general vector formula such as \[ \overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{i}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{k}}\,=1,\overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{k}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{i}}\,=0\] We should also remember some trigonometric conversions such as \[\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }\] to find the required answer.
Complete step by step answer:
Here we have to find the value of \[\sin \theta \] from the given two vectors,
We know that the given two vectors are,
\[\overset{\to }{\mathop{A}}\,=3i+j+2k\] and \[\overset{\to }{\mathop{B}}\,=2i-2j+4k\]
We can now write the vectors in the form,
\[\overset{\to }{\mathop{a}}\,=3\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,+2\overset{\wedge }{\mathop{k}}\,\]
\[\overset{\to }{\mathop{b}}\,=2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+4\overset{\wedge }{\mathop{k}}\,\]
We also know that the formula for the angle between two vectors is
\[\cos \theta =\dfrac{\overset{\to }{\mathop{a}}\,\cdot \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|}\]
We can now substitute the vector values in the above formula and we can write the determinant in denominator as,
\[\Rightarrow \cos \theta =\dfrac{\left( 3\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,+2\overset{\wedge }{\mathop{k}}\, \right)\cdot \left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+4\overset{\wedge }{\mathop{k}}\, \right)}{\sqrt{{{3}^{2}}+{{1}^{2}}+{{2}^{2}}}\times \sqrt{{{2}^{2}}+{{\left( -2 \right)}^{2}}+{{4}^{2}}}}\]
\[\Rightarrow \cos \theta =\dfrac{\left( 3\overset{\wedge }{\mathop{i}}\, \right)\left( 2\overset{\wedge }{\mathop{i}}\, \right)\times \left( \overset{\wedge }{\mathop{j}}\, \right)\left( -2\overset{\wedge }{\mathop{j}}\, \right)\times \left( 2\overset{\wedge }{\mathop{k}}\, \right)\left( 4\overset{\wedge }{\mathop{k}}\, \right)}{\sqrt{{{3}^{2}}+{{1}^{2}}+{{2}^{2}}}\times \sqrt{{{2}^{2}}+{{\left( -2 \right)}^{2}}+{{4}^{2}}}}\]
\[\because \overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{i}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{k}}\,=1,\overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{k}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{i}}\,=0\]
We can now simplify the above step, we get
\[\Rightarrow \cos \theta =\dfrac{6-2+8}{\sqrt{9+1+4}\sqrt{4+4+16}}\]
We can now simplify the above step further, we get
\[\Rightarrow \cos \theta =\dfrac{12}{\sqrt{14}\sqrt{24}}=\dfrac{3}{\sqrt{21}}\]
We know that \[\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }\], we can now substitute the above cosine value in this formula, we get
\[\Rightarrow \sin \theta =\sqrt{1-{{\left( \dfrac{3}{\sqrt{21}} \right)}^{2}}}\]
We can now simplify the above step, we get
\[\Rightarrow \sin \theta =\sqrt{1-\dfrac{9}{21}}=\sqrt{\dfrac{12}{21}}=\sqrt{\dfrac{4}{7}}=\dfrac{2}{\sqrt{7}}\]
So, the correct answer is “Option C”.
Note: We should always remember that the formula to find the angle between two vectors is \[\cos \theta =\dfrac{\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|}\], we should also remember that general vector formula such as \[ \overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{i}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{k}}\,=1,\overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{k}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{i}}\,=0\] We should also remember some trigonometric conversions such as \[\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }\] to find the required answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

