
If \[\overrightarrow{a}\overrightarrow{,b},\overrightarrow{c}\] are mutually perpendicular vectors of equal magnitude, then \[\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\] is equally inclined to
(a). \[\overrightarrow{a}\] only
(b). \[\overrightarrow{a},\overrightarrow{c}\] only
(c). All \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\]
(d). None of these
Answer
543.6k+ views
Hint: First of all we have to determine the relation between the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as in the mutually perpendicular case. Then we have to assume that \[\left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=\left| \overrightarrow{c} \right|\] which is equal to its constant. Then we have to determine the sum of the square for \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\]. After that you have to use the formula for finding the angle between the vectors \[\overrightarrow{a}\] and \[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right),\overrightarrow{b}\] and \[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)\] and \[c\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)\]. Now use can easily find out the vector which is equally inclined.
Complete step by step solution:
In the given question we have given that vectors are equal in magnitudes \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] are of equal magnitudes
So, \[\left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=\left| \overrightarrow{c} \right|\]
Also as per given in the question \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] are mutually perpendicular to each other.
So, \[\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0\]
Now we know that
\[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right).\overrightarrow{a}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{a} \right|\cos \alpha \] Where \[\alpha =angle\] between \[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)\] and \[\overrightarrow{a}\].
Now we will open the bracket of the light hand side and the resulted equation will be,
\[\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{a}+\overrightarrow{c}.\overrightarrow{a}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{a} \right|\cos \alpha .............\left( i \right)\]
Now we will use the property of vectors
Property: \[\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}\] and \[\overrightarrow{a},\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}\] apply the properties on equation (i)
\[\Rightarrow {{\left| \overrightarrow{a} \right|}^{2}}+0+0=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{a} \right|\cos \alpha \]
Now we will find the value of \[\cos \alpha \] from the above equation
\[\Rightarrow \cos \alpha =\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}\]
Now we will take
\[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right),\overrightarrow{b}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \beta \] Where \[\beta =angle\] between \[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)\] and \[\overrightarrow{b}\].
Now we will open the bracket of the left-handed side and the resulted equation will be,
\[\Rightarrow \overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{c}.\overrightarrow{b}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \beta ........(ii)\]
Now we will again use the property of vectors
Property: \[\overrightarrow{a},\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}\] and \[\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}\] apply these properties on equation (ii)
\[\Rightarrow 0+\left| {{\overrightarrow{b}}^{2}} \right|+0=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \beta \]
Now we will find the value of \[\cos \beta \] from the above equation
\[\Rightarrow \cos \beta =\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}\]
Now we will take
\[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{b} \right).\overrightarrow{c}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \gamma \] Where \[\gamma =\] angle between \[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)\] and \[\overrightarrow{c}\].
Now we will open the bracket of the left hand side and the resulted equation will be,
\[\Rightarrow \overrightarrow{a}.\overrightarrow{c}+\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{c}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{c} \right|\cos \gamma .........(iii)\]
Now we will again use the property of vectors
Property: \[\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}\] and \[\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}\] apply the perpendicular on equation (iii)
\[\Rightarrow 0+0+{{\left| \overrightarrow{c} \right|}^{2}}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{c} \right|\cos \gamma \]
Now we will find the value of \[\cos \gamma \] from the above equation
\[\Rightarrow \cos \gamma =\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}\]
As calculated above in the question
\[\Rightarrow \cos \alpha =\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|},\cos \beta =\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|},\cos \gamma =\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}\]
According to the information given in the question we know the
\[\Rightarrow \left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=\left| \overrightarrow{c} \right|\]
Thus we can say that \[\cos \alpha =\cos \beta =\cos \gamma \] and according to the above equation we can say that
\[\Rightarrow \alpha =\beta =\gamma \]
Therefore, \[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)\] is equation inclined to \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\].
So, the correct answer is “Option c”.
Note: We know that the dot product in between \[2\] unit vectors is very simple to compute. If the vector is length type then we have \[3\] vector of dot product i.e. \[\overrightarrow{i}.\overrightarrow{j},\overrightarrow{k}\]. It becomes, \[\overrightarrow{i},\overrightarrow{i}=\overrightarrow{j}.\overrightarrow{j}=\overrightarrow{k}.\overrightarrow{k}=1\] if vector are of length \[\overrightarrow{a}\] then, we get \[\overrightarrow{i},\overrightarrow{i}=\overrightarrow{j}.\overrightarrow{j}=\overrightarrow{k}.\overrightarrow{k}=a\].
Complete step by step solution:
In the given question we have given that vectors are equal in magnitudes \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] are of equal magnitudes
So, \[\left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=\left| \overrightarrow{c} \right|\]
Also as per given in the question \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] are mutually perpendicular to each other.
So, \[\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0\]
Now we know that
\[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right).\overrightarrow{a}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{a} \right|\cos \alpha \] Where \[\alpha =angle\] between \[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)\] and \[\overrightarrow{a}\].
Now we will open the bracket of the light hand side and the resulted equation will be,
\[\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{a}+\overrightarrow{c}.\overrightarrow{a}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{a} \right|\cos \alpha .............\left( i \right)\]
Now we will use the property of vectors
Property: \[\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}\] and \[\overrightarrow{a},\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}\] apply the properties on equation (i)
\[\Rightarrow {{\left| \overrightarrow{a} \right|}^{2}}+0+0=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{a} \right|\cos \alpha \]
Now we will find the value of \[\cos \alpha \] from the above equation
\[\Rightarrow \cos \alpha =\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}\]
Now we will take
\[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right),\overrightarrow{b}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \beta \] Where \[\beta =angle\] between \[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)\] and \[\overrightarrow{b}\].
Now we will open the bracket of the left-handed side and the resulted equation will be,
\[\Rightarrow \overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{c}.\overrightarrow{b}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \beta ........(ii)\]
Now we will again use the property of vectors
Property: \[\overrightarrow{a},\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}\] and \[\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}\] apply these properties on equation (ii)
\[\Rightarrow 0+\left| {{\overrightarrow{b}}^{2}} \right|+0=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \beta \]
Now we will find the value of \[\cos \beta \] from the above equation
\[\Rightarrow \cos \beta =\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}\]
Now we will take
\[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{b} \right).\overrightarrow{c}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{b} \right|\cos \gamma \] Where \[\gamma =\] angle between \[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)\] and \[\overrightarrow{c}\].
Now we will open the bracket of the left hand side and the resulted equation will be,
\[\Rightarrow \overrightarrow{a}.\overrightarrow{c}+\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{c}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{c} \right|\cos \gamma .........(iii)\]
Now we will again use the property of vectors
Property: \[\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}\] and \[\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}\] apply the perpendicular on equation (iii)
\[\Rightarrow 0+0+{{\left| \overrightarrow{c} \right|}^{2}}=\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|\left| \overrightarrow{c} \right|\cos \gamma \]
Now we will find the value of \[\cos \gamma \] from the above equation
\[\Rightarrow \cos \gamma =\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}\]
As calculated above in the question
\[\Rightarrow \cos \alpha =\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|},\cos \beta =\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|},\cos \gamma =\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}\]
According to the information given in the question we know the
\[\Rightarrow \left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=\left| \overrightarrow{c} \right|\]
Thus we can say that \[\cos \alpha =\cos \beta =\cos \gamma \] and according to the above equation we can say that
\[\Rightarrow \alpha =\beta =\gamma \]
Therefore, \[\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)\] is equation inclined to \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\].
So, the correct answer is “Option c”.
Note: We know that the dot product in between \[2\] unit vectors is very simple to compute. If the vector is length type then we have \[3\] vector of dot product i.e. \[\overrightarrow{i}.\overrightarrow{j},\overrightarrow{k}\]. It becomes, \[\overrightarrow{i},\overrightarrow{i}=\overrightarrow{j}.\overrightarrow{j}=\overrightarrow{k}.\overrightarrow{k}=1\] if vector are of length \[\overrightarrow{a}\] then, we get \[\overrightarrow{i},\overrightarrow{i}=\overrightarrow{j}.\overrightarrow{j}=\overrightarrow{k}.\overrightarrow{k}=a\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

