
If $ \overrightarrow{a} $ is a non-zero vector of magnitude $ a $ and \[\lambda \overrightarrow{a}\] is a unit vector, then find the value of $ \lambda . $
Answer
594k+ views
Hint: If we have a unit vector $ \widehat{b} $ then it’s value is given by the following expression $ \widehat{b}=\dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|} $ .
where $ \left| \overrightarrow{b} \right| $ is the magnitude of $ \overrightarrow{b} $ ,
Using the above equation and information given in the question we can find out the value of $ \lambda $ .
Complete step-by-step answer:
As we know value of a unit vector $ \widehat{a} $ is given by,
$ \widehat{a}=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}......(1) $
Where $ \left| \overrightarrow{a} \right| $ is the magnitude of $ \overrightarrow{a} $ .
For example, suppose
$ \overrightarrow{a}=2\widehat{i}+2\overset\frown{j}+\widehat{k} $
where $ \overset\frown{i},\overset\frown{j},\overset\frown{k} $ are the unit vectors in the direction $ x,y\,and\,z $ respectively
so, to find the magnitude of \[\overrightarrow{a}\] i.e. $ \left| \overrightarrow{a} \right| $ we need to add the individual squares of the coefficients of the unit vectors and take the square root of the whole expression so, $ \left| \overrightarrow{a} \right| $ would be equal to $ \sqrt{{{2}^{2}}+{{2}^{2}}+{{1}^{2}}} $
hence, $ \left| \overrightarrow{a} \right|=\sqrt{{{2}^{2}}+{{2}^{2}}+{{1}^{2}}}=\sqrt{4+4+1}=\sqrt{9}=3 $ and hence,
$ \widehat{a}=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}=\dfrac{2\widehat{i}+2\overset\frown{j}+\widehat{k}}{3} $
Now, moving back to the given question,
We are given that:
$ \widehat{a}=\lambda \overrightarrow{a}......(2) $
Comparing and equating both the equations (1) and (2) we get,
$ \lambda \widehat{a}=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|} $
Now, by dividing both sides by $ \overrightarrow{a} $ , we get
$ \lambda =\dfrac{1}{\left| \overrightarrow{a} \right|} $
Hence value of $ \lambda $ is equal to $ \lambda =\dfrac{1}{\left| \overrightarrow{a} \right|} $ .
Note: To solve this problem you need to know the basics of vectors and unit vectors.
You should have a good grasp over what is a unit vector and what is it’s magnitude which is understood by its name (i.e. unit) that is 1. Always remember the following equation of unit vectors for future references:
If we are given a vector $ \overrightarrow{b} $ , then suppose \[\overset\frown{b}\] is the unit vector $ \overrightarrow{b} $ and it’s value will be equal to $ \dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|} $ , i.e. $ \widehat{b}=\dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|} $ where $ \left| \overrightarrow{b} \right| $ is the magnitude of $ \overrightarrow{b} $ .
where $ \left| \overrightarrow{b} \right| $ is the magnitude of $ \overrightarrow{b} $ ,
Using the above equation and information given in the question we can find out the value of $ \lambda $ .
Complete step-by-step answer:
As we know value of a unit vector $ \widehat{a} $ is given by,
$ \widehat{a}=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}......(1) $
Where $ \left| \overrightarrow{a} \right| $ is the magnitude of $ \overrightarrow{a} $ .
For example, suppose
$ \overrightarrow{a}=2\widehat{i}+2\overset\frown{j}+\widehat{k} $
where $ \overset\frown{i},\overset\frown{j},\overset\frown{k} $ are the unit vectors in the direction $ x,y\,and\,z $ respectively
so, to find the magnitude of \[\overrightarrow{a}\] i.e. $ \left| \overrightarrow{a} \right| $ we need to add the individual squares of the coefficients of the unit vectors and take the square root of the whole expression so, $ \left| \overrightarrow{a} \right| $ would be equal to $ \sqrt{{{2}^{2}}+{{2}^{2}}+{{1}^{2}}} $
hence, $ \left| \overrightarrow{a} \right|=\sqrt{{{2}^{2}}+{{2}^{2}}+{{1}^{2}}}=\sqrt{4+4+1}=\sqrt{9}=3 $ and hence,
$ \widehat{a}=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}=\dfrac{2\widehat{i}+2\overset\frown{j}+\widehat{k}}{3} $
Now, moving back to the given question,
We are given that:
$ \widehat{a}=\lambda \overrightarrow{a}......(2) $
Comparing and equating both the equations (1) and (2) we get,
$ \lambda \widehat{a}=\dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|} $
Now, by dividing both sides by $ \overrightarrow{a} $ , we get
$ \lambda =\dfrac{1}{\left| \overrightarrow{a} \right|} $
Hence value of $ \lambda $ is equal to $ \lambda =\dfrac{1}{\left| \overrightarrow{a} \right|} $ .
Note: To solve this problem you need to know the basics of vectors and unit vectors.
You should have a good grasp over what is a unit vector and what is it’s magnitude which is understood by its name (i.e. unit) that is 1. Always remember the following equation of unit vectors for future references:
If we are given a vector $ \overrightarrow{b} $ , then suppose \[\overset\frown{b}\] is the unit vector $ \overrightarrow{b} $ and it’s value will be equal to $ \dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|} $ , i.e. $ \widehat{b}=\dfrac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|} $ where $ \left| \overrightarrow{b} \right| $ is the magnitude of $ \overrightarrow{b} $ .
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

