
If $\overrightarrow{a}$ and $\overrightarrow{b}$ are two vectors, then \[\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\] is equal to?
(a) $0$
(b) $1$
(c) \[\overrightarrow{a}\times \overrightarrow{b}\]
(d) \[\overrightarrow{b}\times \overrightarrow{a}\]
Answer
493.2k+ views
Hint: Assume the given expression as E. Take the cross product \[\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right)\] and simplify it using the relations \[\overrightarrow{a}\times \overrightarrow{a}=0\] and \[\overrightarrow{b}\times \overrightarrow{b}=0\]. Further, use the relation \[\overrightarrow{b}\times \overrightarrow{a}=-\overrightarrow{a}\times \overrightarrow{b}\] by considering the fact that the rotation of vectors in the two cases are in opposite direction and the vector obtained by the vector product is perpendicular to both $\overrightarrow{a}$ and $\overrightarrow{b}$. Add the term \[\left( \overrightarrow{a}\times \overrightarrow{b} \right)\] present at the end to get the answer.
Complete step-by-step solution:
Here we have been provided with two vectors $\overrightarrow{a}$ and $\overrightarrow{b}$, we are asked to find the value of the expression \[\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\]. Let us assume the expression as E, so we have,
\[\Rightarrow E=\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\]
Now, first considering the cross product \[\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right)\] we have,
\[\Rightarrow E=\left\{ 10\left( \overrightarrow{a}\times \overrightarrow{a} \right)+14\left( \overrightarrow{a}\times \overrightarrow{b} \right)+15\left( \overrightarrow{b}\times \overrightarrow{a} \right)+21\left( \overrightarrow{b}\times \overrightarrow{b} \right) \right\}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\]
We know that \[\left( \overrightarrow{a}\times \overrightarrow{b} \right)=ab\sin \theta \left( {\hat{n}} \right)\], where a and b are the magnitudes of $\overrightarrow{a}$ and $\overrightarrow{b}$ respectively, $\theta $ is the angle between the two vectors and \[\left( {\hat{n}} \right)\] is a unit vector perpendicular to the planes of both $\overrightarrow{a}$ and $\overrightarrow{b}$. Since the angle between two equal vectors is ${{0}^{\circ }}$ and we have $\sin {{0}^{\circ }}=0$, therefore \[\left( \overrightarrow{a}\times \overrightarrow{a} \right)=0\] and \[\left( \overrightarrow{b}\times \overrightarrow{b} \right)=0\].
\[\Rightarrow E=\left\{ 14\left( \overrightarrow{a}\times \overrightarrow{b} \right)+15\left( \overrightarrow{b}\times \overrightarrow{a} \right) \right\}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\]
In the cross product \[\left( \overrightarrow{a}\times \overrightarrow{b} \right)\] we rotate $\overrightarrow{a}$ towards $\overrightarrow{b}$ and in cross product \[\left( \overrightarrow{b}\times \overrightarrow{a} \right)\] we rotate $\overrightarrow{b}$ towards $\overrightarrow{a}$, so in the two cases the vectors obtained are perpendicular to both $\overrightarrow{a}$ and $\overrightarrow{b}$ but they are opposite in direction. If the unit vector along \[\left( \overrightarrow{a}\times \overrightarrow{b} \right)\] is $\hat{n}$ then the unit vector along \[\left( \overrightarrow{b}\times \overrightarrow{a} \right)\] will be $-\hat{n}$. Therefore, we have the relation \[\overrightarrow{b}\times \overrightarrow{a}=-\overrightarrow{a}\times \overrightarrow{b}\], so we get,
\[\begin{align}
& \Rightarrow E=\left\{ 14\left( \overrightarrow{a}\times \overrightarrow{b} \right)-15\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\}+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\
& \Rightarrow E=-\left( \overrightarrow{a}\times \overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\
& \therefore E=0 \\
\end{align}\]
Hence, option (a) is the correct answer.
Note: Note that the cross product results in a vector quantity and that is why it is also known as the vector product, while the dot product results in a scalar quantity and hence it is called the scalar product. In case of dot product we have the relation \[\overrightarrow{a}.\overrightarrow{b}=ab\cos \theta \] and it is equal to 0 when the two vectors are perpendicular to each other.
Complete step-by-step solution:
Here we have been provided with two vectors $\overrightarrow{a}$ and $\overrightarrow{b}$, we are asked to find the value of the expression \[\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\]. Let us assume the expression as E, so we have,
\[\Rightarrow E=\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\]
Now, first considering the cross product \[\left( 2\overrightarrow{a}+3\overrightarrow{b} \right)\times \left( 5\overrightarrow{a}+7\overrightarrow{b} \right)\] we have,
\[\Rightarrow E=\left\{ 10\left( \overrightarrow{a}\times \overrightarrow{a} \right)+14\left( \overrightarrow{a}\times \overrightarrow{b} \right)+15\left( \overrightarrow{b}\times \overrightarrow{a} \right)+21\left( \overrightarrow{b}\times \overrightarrow{b} \right) \right\}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\]
We know that \[\left( \overrightarrow{a}\times \overrightarrow{b} \right)=ab\sin \theta \left( {\hat{n}} \right)\], where a and b are the magnitudes of $\overrightarrow{a}$ and $\overrightarrow{b}$ respectively, $\theta $ is the angle between the two vectors and \[\left( {\hat{n}} \right)\] is a unit vector perpendicular to the planes of both $\overrightarrow{a}$ and $\overrightarrow{b}$. Since the angle between two equal vectors is ${{0}^{\circ }}$ and we have $\sin {{0}^{\circ }}=0$, therefore \[\left( \overrightarrow{a}\times \overrightarrow{a} \right)=0\] and \[\left( \overrightarrow{b}\times \overrightarrow{b} \right)=0\].
\[\Rightarrow E=\left\{ 14\left( \overrightarrow{a}\times \overrightarrow{b} \right)+15\left( \overrightarrow{b}\times \overrightarrow{a} \right) \right\}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\]
In the cross product \[\left( \overrightarrow{a}\times \overrightarrow{b} \right)\] we rotate $\overrightarrow{a}$ towards $\overrightarrow{b}$ and in cross product \[\left( \overrightarrow{b}\times \overrightarrow{a} \right)\] we rotate $\overrightarrow{b}$ towards $\overrightarrow{a}$, so in the two cases the vectors obtained are perpendicular to both $\overrightarrow{a}$ and $\overrightarrow{b}$ but they are opposite in direction. If the unit vector along \[\left( \overrightarrow{a}\times \overrightarrow{b} \right)\] is $\hat{n}$ then the unit vector along \[\left( \overrightarrow{b}\times \overrightarrow{a} \right)\] will be $-\hat{n}$. Therefore, we have the relation \[\overrightarrow{b}\times \overrightarrow{a}=-\overrightarrow{a}\times \overrightarrow{b}\], so we get,
\[\begin{align}
& \Rightarrow E=\left\{ 14\left( \overrightarrow{a}\times \overrightarrow{b} \right)-15\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\}+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\
& \Rightarrow E=-\left( \overrightarrow{a}\times \overrightarrow{b} \right)+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\
& \therefore E=0 \\
\end{align}\]
Hence, option (a) is the correct answer.
Note: Note that the cross product results in a vector quantity and that is why it is also known as the vector product, while the dot product results in a scalar quantity and hence it is called the scalar product. In case of dot product we have the relation \[\overrightarrow{a}.\overrightarrow{b}=ab\cos \theta \] and it is equal to 0 when the two vectors are perpendicular to each other.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

