
If $\overrightarrow{a}$ and $\overrightarrow{b}$ are two non-zero perpendicular vectors, then a vector $\overrightarrow{y}$ satisfying equations $\overrightarrow{a}.\overrightarrow{y}=c$ (c scalar) and $\overrightarrow{a}\times \overrightarrow{y}=\overrightarrow{b}$ is
(a) ${{\left| \overrightarrow{a} \right|}^{2}}\left( c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)$
(b) ${{\left| \overrightarrow{a} \right|}^{2}}\left( c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)$
(c) $\dfrac{1}{{{\left| \overrightarrow{a} \right|}^{2}}}\left( c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)$
(d) $\dfrac{1}{{{\left| \overrightarrow{a} \right|}^{2}}}\left( c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)$
Answer
617.7k+ views
Hint: First do cross product by a to both the sides of equation after that apply vector law of three products which are \[\overrightarrow{a}\times \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\left( a.c \right)-\overrightarrow{c}\left( a.b \right)\]by using facts that \[\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta \] where $\theta $ is angle between two vectors and \[\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin \theta \] where $\theta $ is the angle between two vectors. Hence do further calculations to get the desired result.
Complete step-by-step answer:
In the dot product of two vectors $\overrightarrow{c},\overrightarrow{d}$ then we can say that,
$\overrightarrow{c}.\overrightarrow{d}=\left| \overrightarrow{c} \right|\left| \overrightarrow{d} \right|\cos \theta $
Here $\theta $ is the angle between two vectors and $\left| c \right|$ and $\left| d \right|$ are absolute values of vectors $\overrightarrow{c}$and \[\overrightarrow{d}\] . Now in the question we all know that $\overrightarrow{a},\overrightarrow{b}$ are perpendicular to each other then the angle between them is ${{90}^{\circ }}$, so in the equation,
$\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos ({{90}^{o}})$
Now we know, $\cos {{90}^{\circ }}=0$, so $\overrightarrow{a}.\overrightarrow{b}=0$.
Now in the cross product of two vectors $\overrightarrow{c},\overrightarrow{d}$ then we can say that,
$\overrightarrow{c}\times \overrightarrow{d}=\left| c \right|\left| d \right|\sin \theta $
Here $\theta $ is the angle between two vectors, $\left| c \right|$ and $\left| d \right|$ are absolute values of vectors $\overrightarrow{c}$ and $\overrightarrow{d}$ . Now in the question we all know that $\overrightarrow{a},\overrightarrow{b}$ is perpendicular to each other then the angle between them is ${{90}^{\circ }}$, so we can write
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin ({{90}^{o}})$
We know, $\sin {{90}^{\circ }}=1$, so $\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|$.
Now from the question,
$\overrightarrow{a}.\overrightarrow{y}=c$ and $\overrightarrow{a}\times \overrightarrow{y}=\overrightarrow{b}$
For $\overrightarrow{a}\times \overrightarrow{y}=\overrightarrow{b}$ we cross multiply $\overrightarrow{a}$ on both sides we get,
$\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{y} \right)=\overrightarrow{a}\times \overrightarrow{b}$
Now here we will use formula, $\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\overrightarrow{b}\left( \vec{a}.\vec{c} \right)-\overrightarrow{c}\left( \vec{a}.\vec{b} \right)$, so above equation can be written as
$\left( \overrightarrow{a}.\overrightarrow{y} \right)\overrightarrow{a}-\left( \overrightarrow{a}.\overrightarrow{a} \right)\overrightarrow{y}=\overrightarrow{a}\times \overrightarrow{b}$
We know $\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$ and it is given that $\overrightarrow{a}.\overrightarrow{y}=c$, so above equation can be written as,
\[\begin{align}
& c\overrightarrow{a}-{{\left| \overrightarrow{a} \right|}^{2}}\overrightarrow{y}=\overrightarrow{a}\times \overrightarrow{b} \\
& \Rightarrow {{\left| \overrightarrow{a} \right|}^{2}}\overrightarrow{y}=c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\
& \Rightarrow \overrightarrow{y}=\dfrac{1}{{{\left| \overrightarrow{a} \right|}^{2}}}\left\{ c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\} \\
\end{align}\]
Hence the correct option is (c) or (d).
Note: Students should be careful while applying vector law of 3 products which is \[\overrightarrow{a}\times \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\left( a.c \right)-\overrightarrow{c}\left( a.b \right)\].
If they write the vector product as \[\overrightarrow{a}\times \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{c}\left( a.b \right)-\overrightarrow{b}\left( a.c \right)\], they will get option (a) or (b) as the answer.
Students generally make mistake in solving the term, $\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$.
Complete step-by-step answer:
In the dot product of two vectors $\overrightarrow{c},\overrightarrow{d}$ then we can say that,
$\overrightarrow{c}.\overrightarrow{d}=\left| \overrightarrow{c} \right|\left| \overrightarrow{d} \right|\cos \theta $
Here $\theta $ is the angle between two vectors and $\left| c \right|$ and $\left| d \right|$ are absolute values of vectors $\overrightarrow{c}$and \[\overrightarrow{d}\] . Now in the question we all know that $\overrightarrow{a},\overrightarrow{b}$ are perpendicular to each other then the angle between them is ${{90}^{\circ }}$, so in the equation,
$\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos ({{90}^{o}})$
Now we know, $\cos {{90}^{\circ }}=0$, so $\overrightarrow{a}.\overrightarrow{b}=0$.
Now in the cross product of two vectors $\overrightarrow{c},\overrightarrow{d}$ then we can say that,
$\overrightarrow{c}\times \overrightarrow{d}=\left| c \right|\left| d \right|\sin \theta $
Here $\theta $ is the angle between two vectors, $\left| c \right|$ and $\left| d \right|$ are absolute values of vectors $\overrightarrow{c}$ and $\overrightarrow{d}$ . Now in the question we all know that $\overrightarrow{a},\overrightarrow{b}$ is perpendicular to each other then the angle between them is ${{90}^{\circ }}$, so we can write
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin ({{90}^{o}})$
We know, $\sin {{90}^{\circ }}=1$, so $\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|$.
Now from the question,
$\overrightarrow{a}.\overrightarrow{y}=c$ and $\overrightarrow{a}\times \overrightarrow{y}=\overrightarrow{b}$
For $\overrightarrow{a}\times \overrightarrow{y}=\overrightarrow{b}$ we cross multiply $\overrightarrow{a}$ on both sides we get,
$\overrightarrow{a}\times \left( \overrightarrow{a}\times \overrightarrow{y} \right)=\overrightarrow{a}\times \overrightarrow{b}$
Now here we will use formula, $\overrightarrow{a}\times \left( \overrightarrow{b}\times \overrightarrow{c} \right)=\overrightarrow{b}\left( \vec{a}.\vec{c} \right)-\overrightarrow{c}\left( \vec{a}.\vec{b} \right)$, so above equation can be written as
$\left( \overrightarrow{a}.\overrightarrow{y} \right)\overrightarrow{a}-\left( \overrightarrow{a}.\overrightarrow{a} \right)\overrightarrow{y}=\overrightarrow{a}\times \overrightarrow{b}$
We know $\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$ and it is given that $\overrightarrow{a}.\overrightarrow{y}=c$, so above equation can be written as,
\[\begin{align}
& c\overrightarrow{a}-{{\left| \overrightarrow{a} \right|}^{2}}\overrightarrow{y}=\overrightarrow{a}\times \overrightarrow{b} \\
& \Rightarrow {{\left| \overrightarrow{a} \right|}^{2}}\overrightarrow{y}=c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \\
& \Rightarrow \overrightarrow{y}=\dfrac{1}{{{\left| \overrightarrow{a} \right|}^{2}}}\left\{ c\overrightarrow{a}-\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\} \\
\end{align}\]
Hence the correct option is (c) or (d).
Note: Students should be careful while applying vector law of 3 products which is \[\overrightarrow{a}\times \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{b}\left( a.c \right)-\overrightarrow{c}\left( a.b \right)\].
If they write the vector product as \[\overrightarrow{a}\times \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{c}\left( a.b \right)-\overrightarrow{b}\left( a.c \right)\], they will get option (a) or (b) as the answer.
Students generally make mistake in solving the term, $\overrightarrow{a}.\overrightarrow{a}={{\left| \overrightarrow{a} \right|}^{2}}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

