
If \[\overrightarrow x = 3\hat i - 6\hat j - \hat k\], \[\overrightarrow y = \hat i + 4\hat j - 3\hat k\] and \[\overrightarrow z = 3\hat i - 4\hat j - 12\hat k\], then the magnitude of the projection of \[\overrightarrow x \times \overrightarrow y \] on \[\overrightarrow z \] is
(A) 12
(B) 15
(C) 14
(D) 13
Answer
591k+ views
Hint: Here first we will find the vector \[\overrightarrow x \times \overrightarrow y \] using the cross product and then we will find the unit vector of z and then finally we will find the projection of \[\overrightarrow x \times \overrightarrow y \] on \[\overrightarrow z \].
The unit vector of vector \[\overrightarrow a \] is given by:-
\[\hat a = \dfrac{{\overrightarrow a }}{{\left| {\overrightarrow a } \right|}}\]
The projection of vector \[\overrightarrow b \] on \[\overrightarrow a \] is given by:-
\[{\text{Projection}} = \overrightarrow b .\hat a\]
Complete step-by-step answer:
The vector x is given by:-
\[\overrightarrow x = 3\hat i - 6\hat j - \hat k\]
The vector y is given by:-
\[\overrightarrow y = \hat i + 4\hat j - 3\hat k\]
Now we will find the vector \[\overrightarrow x \times \overrightarrow y \]
The cross product of x and y is given by:-
\[\overrightarrow x \times \overrightarrow y = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
3&{ - 6}&{ - 1} \\
1&4&{ - 3}
\end{array}} \right|\]
Expanding the determinant with respect to column 1 we get:-
\[\overrightarrow x \times \overrightarrow y = \hat i\left[ {\left( { - 6} \right)\left( { - 3} \right) - \left( 4 \right)\left( { - 1} \right)} \right] - \hat j\left[ {\left( 3 \right)\left( { - 3} \right) - \left( 1 \right)\left( { - 1} \right)} \right] + \hat k\left[ {\left( 3 \right)\left( 4 \right) - \left( 1 \right)\left( { - 6} \right)} \right]\]
Simplifying it further we get:-
\[
\overrightarrow x \times \overrightarrow y = \hat i\left[ {18 + 4} \right] - \hat j\left[ { - 9 + 1} \right] + \hat k\left[ {12 + 6} \right] \\
\Rightarrow \overrightarrow x \times \overrightarrow y = 22\hat i + 8\hat j + 18\hat k \\
\]
Now we will find the unit vector of z.
First we will find the magnitude of z.
The magnitude of a vector \[\overrightarrow A = a\hat i + b\hat j + c\hat k\] is given by:-
\[\left| {\overrightarrow A } \right| = \sqrt {{a^2} + {b^2} + {c^2}} \]
Hence applying this formula the magnitude of z is:-
\[\left| {\overrightarrow z } \right| = \sqrt {{{\left( 3 \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 12} \right)}^2}} \]
Simplifying it further we get:-
\[
\left| {\overrightarrow z } \right| = \sqrt {9 + 16 + 144} \\
\Rightarrow \left| {\overrightarrow z } \right| = \sqrt {169} \\
\Rightarrow \left| {\overrightarrow z } \right| = 13 \\
\]
Now we know that:
The unit vector of vector \[\overrightarrow a \] is given by:-
\[\hat a = \dfrac{{\overrightarrow a }}{{\left| {\overrightarrow a } \right|}}\]
Hence the unit vector of z is given by:-
\[\hat z = \dfrac{{\overrightarrow z }}{{\left| {\overrightarrow z } \right|}}\]
Putting in the respective values we get:-
\[\hat z = \dfrac{{3\hat i - 4\hat j - 12\hat k}}{{13}}\]
Now we will find the projection of \[\overrightarrow x \times \overrightarrow y \] on \[\overrightarrow z \]
Now we know that the projection of vector \[\overrightarrow b \] on \[\overrightarrow a \] is given by:-
\[{\text{Projection}} = \overrightarrow b .\hat a\]
Hence the projection of \[\overrightarrow x \times \overrightarrow y \] on \[\overrightarrow z \] is given by:-
\[{\text{Projection}} = \overrightarrow x \times \overrightarrow y .\hat z\]
Hence putting the respective values we get:-
\[{\text{Projection}} = \left( {22\hat i + 8\hat j + 18\hat k} \right).\dfrac{{3\hat i - 4\hat j - 12\hat k}}{{13}}\]
Solving it further we get:-
We know that:-
\[
\hat i.\hat i = \hat j.\hat j = \hat k.\hat k = 1 \\
\hat i.\hat j = \hat j.\hat k = \hat k.\hat i = 0 \\
\]
Hence we get:-
\[
{\text{Projection}} = \dfrac{{22\left( 3 \right) + 8\left( { - 4} \right) + 18\left( { - 12} \right)}}{{13}} \\
\Rightarrow {\text{Projection}} = \dfrac{{66 - 32 - 216}}{{13}} \\
\Rightarrow {\text{Projection}} = \dfrac{{ - 182}}{{13}} \\
\]
Now since the magnitude is the modulus value.
Therefore the magnitude of projection is:-
\[
\left| {{\text{Projection}}} \right| = \left| {\dfrac{{ - 182}}{{13}}} \right| \\
\Rightarrow \left| {{\text{Projection}}} \right| = 14 \\
\]
Therefore the magnitude is 14.
So, the correct answer is “Option C”.
Note: Students should note that the projection of vector \[\overrightarrow b \] on \[\overrightarrow a \] is given by:-
\[{\text{Projection}} = \overrightarrow b .\hat a\]
While the projection of vector \[\overrightarrow a \] on \[\overrightarrow b \] is given by:-
\[{\text{Projection}} = \overrightarrow a .\hat b\]
So, students should not make mistakes in finding the projection.
The unit vector of vector \[\overrightarrow a \] is given by:-
\[\hat a = \dfrac{{\overrightarrow a }}{{\left| {\overrightarrow a } \right|}}\]
The projection of vector \[\overrightarrow b \] on \[\overrightarrow a \] is given by:-
\[{\text{Projection}} = \overrightarrow b .\hat a\]
Complete step-by-step answer:
The vector x is given by:-
\[\overrightarrow x = 3\hat i - 6\hat j - \hat k\]
The vector y is given by:-
\[\overrightarrow y = \hat i + 4\hat j - 3\hat k\]
Now we will find the vector \[\overrightarrow x \times \overrightarrow y \]
The cross product of x and y is given by:-
\[\overrightarrow x \times \overrightarrow y = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
3&{ - 6}&{ - 1} \\
1&4&{ - 3}
\end{array}} \right|\]
Expanding the determinant with respect to column 1 we get:-
\[\overrightarrow x \times \overrightarrow y = \hat i\left[ {\left( { - 6} \right)\left( { - 3} \right) - \left( 4 \right)\left( { - 1} \right)} \right] - \hat j\left[ {\left( 3 \right)\left( { - 3} \right) - \left( 1 \right)\left( { - 1} \right)} \right] + \hat k\left[ {\left( 3 \right)\left( 4 \right) - \left( 1 \right)\left( { - 6} \right)} \right]\]
Simplifying it further we get:-
\[
\overrightarrow x \times \overrightarrow y = \hat i\left[ {18 + 4} \right] - \hat j\left[ { - 9 + 1} \right] + \hat k\left[ {12 + 6} \right] \\
\Rightarrow \overrightarrow x \times \overrightarrow y = 22\hat i + 8\hat j + 18\hat k \\
\]
Now we will find the unit vector of z.
First we will find the magnitude of z.
The magnitude of a vector \[\overrightarrow A = a\hat i + b\hat j + c\hat k\] is given by:-
\[\left| {\overrightarrow A } \right| = \sqrt {{a^2} + {b^2} + {c^2}} \]
Hence applying this formula the magnitude of z is:-
\[\left| {\overrightarrow z } \right| = \sqrt {{{\left( 3 \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( { - 12} \right)}^2}} \]
Simplifying it further we get:-
\[
\left| {\overrightarrow z } \right| = \sqrt {9 + 16 + 144} \\
\Rightarrow \left| {\overrightarrow z } \right| = \sqrt {169} \\
\Rightarrow \left| {\overrightarrow z } \right| = 13 \\
\]
Now we know that:
The unit vector of vector \[\overrightarrow a \] is given by:-
\[\hat a = \dfrac{{\overrightarrow a }}{{\left| {\overrightarrow a } \right|}}\]
Hence the unit vector of z is given by:-
\[\hat z = \dfrac{{\overrightarrow z }}{{\left| {\overrightarrow z } \right|}}\]
Putting in the respective values we get:-
\[\hat z = \dfrac{{3\hat i - 4\hat j - 12\hat k}}{{13}}\]
Now we will find the projection of \[\overrightarrow x \times \overrightarrow y \] on \[\overrightarrow z \]
Now we know that the projection of vector \[\overrightarrow b \] on \[\overrightarrow a \] is given by:-
\[{\text{Projection}} = \overrightarrow b .\hat a\]
Hence the projection of \[\overrightarrow x \times \overrightarrow y \] on \[\overrightarrow z \] is given by:-
\[{\text{Projection}} = \overrightarrow x \times \overrightarrow y .\hat z\]
Hence putting the respective values we get:-
\[{\text{Projection}} = \left( {22\hat i + 8\hat j + 18\hat k} \right).\dfrac{{3\hat i - 4\hat j - 12\hat k}}{{13}}\]
Solving it further we get:-
We know that:-
\[
\hat i.\hat i = \hat j.\hat j = \hat k.\hat k = 1 \\
\hat i.\hat j = \hat j.\hat k = \hat k.\hat i = 0 \\
\]
Hence we get:-
\[
{\text{Projection}} = \dfrac{{22\left( 3 \right) + 8\left( { - 4} \right) + 18\left( { - 12} \right)}}{{13}} \\
\Rightarrow {\text{Projection}} = \dfrac{{66 - 32 - 216}}{{13}} \\
\Rightarrow {\text{Projection}} = \dfrac{{ - 182}}{{13}} \\
\]
Now since the magnitude is the modulus value.
Therefore the magnitude of projection is:-
\[
\left| {{\text{Projection}}} \right| = \left| {\dfrac{{ - 182}}{{13}}} \right| \\
\Rightarrow \left| {{\text{Projection}}} \right| = 14 \\
\]
Therefore the magnitude is 14.
So, the correct answer is “Option C”.
Note: Students should note that the projection of vector \[\overrightarrow b \] on \[\overrightarrow a \] is given by:-
\[{\text{Projection}} = \overrightarrow b .\hat a\]
While the projection of vector \[\overrightarrow a \] on \[\overrightarrow b \] is given by:-
\[{\text{Projection}} = \overrightarrow a .\hat b\]
So, students should not make mistakes in finding the projection.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

