
If $\overrightarrow a ,\overrightarrow b $ are the unit vectors inclined to x-axis at the angle $30^\circ {\text{ and 120}}^\circ $ then $\left| {\overrightarrow a + \overrightarrow b } \right|$ equals
A. $\sqrt {2/3} $
B. $\sqrt 2 $
C. $\sqrt 3 $
D. $2$
Answer
579k+ views
Hint:
We can write $\overrightarrow a ,\overrightarrow b $ in the form of $\widehat i,\widehat j$ and we know that $\overrightarrow a ,\overrightarrow b $ are unit vectors so we can say that
$\left| a \right| = 1,\left| b \right| = 1$
So let us assume that $\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j$ and $\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j$
Complete step by step solution:
Here we know that $\overrightarrow a ,\overrightarrow b $ are unit vectors so we can say that their magnitudes are equal to one
$\left| a \right| = 1,\left| b \right| = 1$
So let us assume that $\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j$ and $\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j$ are two vectors and we know that $\left| a \right| = 1,\left| b \right| = 1$ so we get that $\sqrt {{x_1}^2 + {y_1}^2} = 1$ and $\sqrt {{x_2}^2 + {y_2}^2} = 1$
Now we are also given that $\overrightarrow a ,\overrightarrow b $ are the unit vectors inclined to x-axis at the angle $30^\circ {\text{ and 120}}^\circ $
So we get the graph as
Therefore the angle made by the $\overrightarrow b $ by the negative x-axis is $180 - 120 = 60^\circ $
Now as we assumed that $\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j$ so we can write that
${x_1} = \left| a \right|\cos 30^\circ ,{y_1} = \left| a \right|\sin 30^\circ $ and we know that $\left| a \right| = 1,\left| b \right| = 1$
So ${x_1} = \dfrac{{\sqrt 3 }}{2},{y_1} = \dfrac{1}{2}$
So we get the $\overrightarrow a = \dfrac{{\sqrt 3 }}{2}\widehat i + \dfrac{1}{2}\widehat j$
Now as we assumed that $\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j$ so we can write that
${x_2} = - \left| b \right|\cos 60^\circ ,{y_2} = \left| b \right|\sin 60^\circ $ and we know that $\left| a \right| = 1,\left| b \right| = 1$
So ${x_2} = \dfrac{{ - 1}}{2},{y_2} = \dfrac{{\sqrt 3 }}{2}$
So we get the $\overrightarrow b = \dfrac{1}{2}\widehat i + \dfrac{{\sqrt 3 }}{2}\widehat j$
So we get
$\overrightarrow a + \overrightarrow b = \dfrac{{\sqrt 3 }}{2}\widehat i + \dfrac{1}{2}\widehat j$$ + \dfrac{1}{2}\widehat i + \dfrac{{\sqrt 3 }}{2}\widehat j$
$\overrightarrow a + \overrightarrow b = (\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2})\widehat i + (\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2})\widehat j$
Now the magnitude of this can be written as
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)}^2}} $
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {\left( {\dfrac{{{{(\sqrt 3 - 1)}^2}}}{4}} \right) + \left( {\dfrac{{{{(\sqrt 3 + 1)}^2}}}{4}} \right)} $
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {\dfrac{{3 + 1 + 3 + 1 - 2\sqrt 3 + 2\sqrt 3 }}{4}} = \sqrt {\dfrac{8}{4}} = \sqrt 2 $
So we got that $\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 2 $
Note:
As we know that $\left| a \right| = 1,\left| b \right| = 1$ and the angle between them is $\theta = 120 - 30 = 90^\circ $
So $\overrightarrow a + \overrightarrow b $ is the resultant of $\overrightarrow a {\text{ and }}\overrightarrow b $ and its magnitude is given as
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left( {\left| {\overrightarrow a } \right|} \right)}^2} + {{\left( {\left| {\overrightarrow b } \right|} \right)}^2} + 2\left( {\left| {\overrightarrow a } \right|} \right)\left( {\left| {\overrightarrow b } \right|} \right)\cos \theta } $
$
= \sqrt {{1^2} + {1^2} + 2.1.1.\cos 90} \\
= \sqrt 2 \\
$
We can write $\overrightarrow a ,\overrightarrow b $ in the form of $\widehat i,\widehat j$ and we know that $\overrightarrow a ,\overrightarrow b $ are unit vectors so we can say that
$\left| a \right| = 1,\left| b \right| = 1$
So let us assume that $\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j$ and $\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j$
Complete step by step solution:
Here we know that $\overrightarrow a ,\overrightarrow b $ are unit vectors so we can say that their magnitudes are equal to one
$\left| a \right| = 1,\left| b \right| = 1$
So let us assume that $\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j$ and $\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j$ are two vectors and we know that $\left| a \right| = 1,\left| b \right| = 1$ so we get that $\sqrt {{x_1}^2 + {y_1}^2} = 1$ and $\sqrt {{x_2}^2 + {y_2}^2} = 1$
Now we are also given that $\overrightarrow a ,\overrightarrow b $ are the unit vectors inclined to x-axis at the angle $30^\circ {\text{ and 120}}^\circ $
So we get the graph as
Therefore the angle made by the $\overrightarrow b $ by the negative x-axis is $180 - 120 = 60^\circ $
Now as we assumed that $\overrightarrow a = {x_1}\widehat i + {y_1}\widehat j$ so we can write that
${x_1} = \left| a \right|\cos 30^\circ ,{y_1} = \left| a \right|\sin 30^\circ $ and we know that $\left| a \right| = 1,\left| b \right| = 1$
So ${x_1} = \dfrac{{\sqrt 3 }}{2},{y_1} = \dfrac{1}{2}$
So we get the $\overrightarrow a = \dfrac{{\sqrt 3 }}{2}\widehat i + \dfrac{1}{2}\widehat j$
Now as we assumed that $\overrightarrow b = {x_2}\widehat i + {y_2}\widehat j$ so we can write that
${x_2} = - \left| b \right|\cos 60^\circ ,{y_2} = \left| b \right|\sin 60^\circ $ and we know that $\left| a \right| = 1,\left| b \right| = 1$
So ${x_2} = \dfrac{{ - 1}}{2},{y_2} = \dfrac{{\sqrt 3 }}{2}$
So we get the $\overrightarrow b = \dfrac{1}{2}\widehat i + \dfrac{{\sqrt 3 }}{2}\widehat j$
So we get
$\overrightarrow a + \overrightarrow b = \dfrac{{\sqrt 3 }}{2}\widehat i + \dfrac{1}{2}\widehat j$$ + \dfrac{1}{2}\widehat i + \dfrac{{\sqrt 3 }}{2}\widehat j$
$\overrightarrow a + \overrightarrow b = (\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2})\widehat i + (\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2})\widehat j$
Now the magnitude of this can be written as
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)}^2}} $
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {\left( {\dfrac{{{{(\sqrt 3 - 1)}^2}}}{4}} \right) + \left( {\dfrac{{{{(\sqrt 3 + 1)}^2}}}{4}} \right)} $
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {\dfrac{{3 + 1 + 3 + 1 - 2\sqrt 3 + 2\sqrt 3 }}{4}} = \sqrt {\dfrac{8}{4}} = \sqrt 2 $
So we got that $\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 2 $
Note:
As we know that $\left| a \right| = 1,\left| b \right| = 1$ and the angle between them is $\theta = 120 - 30 = 90^\circ $
So $\overrightarrow a + \overrightarrow b $ is the resultant of $\overrightarrow a {\text{ and }}\overrightarrow b $ and its magnitude is given as
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left( {\left| {\overrightarrow a } \right|} \right)}^2} + {{\left( {\left| {\overrightarrow b } \right|} \right)}^2} + 2\left( {\left| {\overrightarrow a } \right|} \right)\left( {\left| {\overrightarrow b } \right|} \right)\cos \theta } $
$
= \sqrt {{1^2} + {1^2} + 2.1.1.\cos 90} \\
= \sqrt 2 \\
$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

