
If \[\overrightarrow a \] and \[\overrightarrow b \] are two non collinear unit vectors and \[\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 3 \] then \[\left( {2\overrightarrow a - 5\overrightarrow b } \right) \cdot \left( {3\overrightarrow a + \overrightarrow b } \right) = \]
Answer
524.4k+ views
Hint: Here in this question, we have to find the value of the given vector equation i.e., \[\left( {2\overrightarrow a - 5\overrightarrow b } \right) \cdot \left( {3\overrightarrow a + \overrightarrow b } \right)\] using a vector condition \[\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 3 \]. This can solve by substituting the value of \[\overrightarrow a \] and \[\overrightarrow b \] (given that two vectors are unit vectors then it values are \[\overrightarrow a = 1\] and \[\overrightarrow b = 1\]) and find the value of \[\overrightarrow a \cdot \overrightarrow b \] by simplifying the condition \[\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 3 \] and by substituting all these values in a simplified vector equation we get the required solution.
Complete step-by-step answer:
Vector is a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity’s magnitude. Although a vector has magnitude and direction, it does not have position.
Let us consider the condition,
\[ \Rightarrow \left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 3 \]
Squaring on both sides, we get
\[ \Rightarrow {\left( {\left| {\overrightarrow a + \overrightarrow b } \right|} \right)^2} = {\left( {\sqrt 3 } \right)^2}\]
Apply a algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], then
\[ \Rightarrow {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2 \cdot \overrightarrow a \cdot \overrightarrow b = {\left( {\sqrt 3 } \right)^2}\]
Given \[\overrightarrow a \] and \[\overrightarrow b \] are unit vectors which have a length 1 unit.
i.e., \[\left| {\overrightarrow a } \right| = 1\] and \[\left| {\overrightarrow b } \right| = 1\], on substituting we have
\[ \Rightarrow {1^2} + {1^2} + 2 \cdot \overrightarrow a \cdot \overrightarrow b = {\left( {\sqrt 3 } \right)^2}\]
On simplification, we have
\[ \Rightarrow 1 + 1 + 2 \cdot \overrightarrow a \cdot \overrightarrow b = 3\]
\[ \Rightarrow 2 + 2 \cdot \overrightarrow a \cdot \overrightarrow b = 3\]
Subtract 2 on both sides, then
\[ \Rightarrow 2 \cdot \overrightarrow a \cdot \overrightarrow b = 3 - 2\]
\[ \Rightarrow 2 \cdot \overrightarrow a \cdot \overrightarrow b = 1\]
Divide both side by 2, then
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = \dfrac{1}{2}\]
Now consider,
\[ \Rightarrow \left( {2\overrightarrow a - 5\overrightarrow b } \right) \cdot \left( {3\overrightarrow a + \overrightarrow b } \right) = \]
Remove parenthesis by multiplying a binomial
\[ \Rightarrow 6{\left| {\overrightarrow a } \right|^2} + 2\overrightarrow a \cdot \overrightarrow b - 15\overrightarrow b \cdot \overrightarrow a - 5{\left| {\overrightarrow b } \right|^2}\]
Where, \[\left| {\overrightarrow a } \right| = 1\], \[\left| {\overrightarrow b } \right| = 1\] and \[\overrightarrow a \cdot \overrightarrow b = \dfrac{1}{2}\], on substituting we have
\[ \Rightarrow 6{\left( 1 \right)^2} + 2\left( {\dfrac{1}{2}} \right) - 15\left( {\dfrac{1}{2}} \right) - 5{\left( 1 \right)^2}\]
On simplification, we have
\[ \Rightarrow 6 + 1 - \dfrac{{15}}{2} - 5\]
\[ \Rightarrow 7 - \dfrac{{15}}{2} - 5\]
\[ \Rightarrow 2 - \dfrac{{15}}{2}\]
Take 2 as LCM, then
\[ \Rightarrow \dfrac{{4 - 15}}{2}\]
On simplification, we get
\[ \Rightarrow - \dfrac{{11}}{2}\]
Hence, it’s a required solution.
So, the correct answer is “\[ \Rightarrow - \dfrac{{11}}{2}\]”.
Note: Remember, a vector is a quantity that has both magnitude, as well as direction. A vector that has a magnitude of 1 is a unit vector. It is also known as Direction Vector. When two or more vectors which are parallel to the same line irrespective of their magnitudes and direction are known as Collinear vectors otherwise its non collinear.
Complete step-by-step answer:
Vector is a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity’s magnitude. Although a vector has magnitude and direction, it does not have position.
Let us consider the condition,
\[ \Rightarrow \left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt 3 \]
Squaring on both sides, we get
\[ \Rightarrow {\left( {\left| {\overrightarrow a + \overrightarrow b } \right|} \right)^2} = {\left( {\sqrt 3 } \right)^2}\]
Apply a algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], then
\[ \Rightarrow {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + 2 \cdot \overrightarrow a \cdot \overrightarrow b = {\left( {\sqrt 3 } \right)^2}\]
Given \[\overrightarrow a \] and \[\overrightarrow b \] are unit vectors which have a length 1 unit.
i.e., \[\left| {\overrightarrow a } \right| = 1\] and \[\left| {\overrightarrow b } \right| = 1\], on substituting we have
\[ \Rightarrow {1^2} + {1^2} + 2 \cdot \overrightarrow a \cdot \overrightarrow b = {\left( {\sqrt 3 } \right)^2}\]
On simplification, we have
\[ \Rightarrow 1 + 1 + 2 \cdot \overrightarrow a \cdot \overrightarrow b = 3\]
\[ \Rightarrow 2 + 2 \cdot \overrightarrow a \cdot \overrightarrow b = 3\]
Subtract 2 on both sides, then
\[ \Rightarrow 2 \cdot \overrightarrow a \cdot \overrightarrow b = 3 - 2\]
\[ \Rightarrow 2 \cdot \overrightarrow a \cdot \overrightarrow b = 1\]
Divide both side by 2, then
\[ \Rightarrow \overrightarrow a \cdot \overrightarrow b = \dfrac{1}{2}\]
Now consider,
\[ \Rightarrow \left( {2\overrightarrow a - 5\overrightarrow b } \right) \cdot \left( {3\overrightarrow a + \overrightarrow b } \right) = \]
Remove parenthesis by multiplying a binomial
\[ \Rightarrow 6{\left| {\overrightarrow a } \right|^2} + 2\overrightarrow a \cdot \overrightarrow b - 15\overrightarrow b \cdot \overrightarrow a - 5{\left| {\overrightarrow b } \right|^2}\]
Where, \[\left| {\overrightarrow a } \right| = 1\], \[\left| {\overrightarrow b } \right| = 1\] and \[\overrightarrow a \cdot \overrightarrow b = \dfrac{1}{2}\], on substituting we have
\[ \Rightarrow 6{\left( 1 \right)^2} + 2\left( {\dfrac{1}{2}} \right) - 15\left( {\dfrac{1}{2}} \right) - 5{\left( 1 \right)^2}\]
On simplification, we have
\[ \Rightarrow 6 + 1 - \dfrac{{15}}{2} - 5\]
\[ \Rightarrow 7 - \dfrac{{15}}{2} - 5\]
\[ \Rightarrow 2 - \dfrac{{15}}{2}\]
Take 2 as LCM, then
\[ \Rightarrow \dfrac{{4 - 15}}{2}\]
On simplification, we get
\[ \Rightarrow - \dfrac{{11}}{2}\]
Hence, it’s a required solution.
So, the correct answer is “\[ \Rightarrow - \dfrac{{11}}{2}\]”.
Note: Remember, a vector is a quantity that has both magnitude, as well as direction. A vector that has a magnitude of 1 is a unit vector. It is also known as Direction Vector. When two or more vectors which are parallel to the same line irrespective of their magnitudes and direction are known as Collinear vectors otherwise its non collinear.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

