
If $\overrightarrow A = 2\widehat i + 7\widehat j + 3\widehat k$ and $\overrightarrow B = 3\widehat i + 2\widehat j + 5\widehat k$, then find the projection of $\overrightarrow a $ and $\overrightarrow b $.
Answer
586.2k+ views
Hint:
The problem has a vector $\overrightarrow A $ projected on vector $\overrightarrow B $. Thus, one vector component of $\overrightarrow A $ is parallel to the vector $\overrightarrow B $. We can easily calculate the projection of $\overrightarrow A $ and $\overrightarrow B $ by using one formula
\[{\text{Pro}}{{\text{j}}_{(\overrightarrow {B)} }}^{(\overrightarrow {A)} } = \,\dfrac{1}{{|\overrightarrow B |\,}}\,(\overrightarrow A \,.\,\overrightarrow B )\,\,or\,\,\dfrac{{(\overrightarrow A \,.\,\overrightarrow B )\,}}{{|\overrightarrow B |\,}}\]
Stepwise solution:
Given:
$\overrightarrow A = 2\widehat i + 7\widehat j + 3\widehat k$
$\overrightarrow B = 3\widehat i + 2\widehat j + 5\widehat k$
If it is given in the question that $\overrightarrow A $ projects on $\overrightarrow B $ , so that the vector component of $\overrightarrow A $ is in the direction of vector component $\overrightarrow B $. The orthogonal projection of A onto a straight line parallel to B, which is defined as \[A = A\widehat B\] where A is scalar, called a scalar projection of A onto B, and B is the unit vector in the direction of B.
Thus, the projection of $\overrightarrow A $ on $\overrightarrow B $ can be written as:
\[\Pr o{j_{(\overrightarrow {B)} }}^{(\overrightarrow {A)} } = \,\dfrac{1}{{|\overrightarrow B |\,}}\,(\overrightarrow A \,.\,\overrightarrow B )\,\] eq. (1)
Where, \[(\overrightarrow A \,.\,\overrightarrow B )\,\]is the dot product of two vectors $\overrightarrow A $and $\overrightarrow B $ and $|\overrightarrow B |$ is the magnitude of vector $\overrightarrow B $.
$\overrightarrow A = 2\widehat i + 7\widehat j + 3\widehat k$ and $\overrightarrow B = 3\widehat i + 2\widehat j + 5\widehat k$
So, dot product of $\overrightarrow A $ and $\overrightarrow B $ gives:
$(\overrightarrow A .\overrightarrow B )\, = \,(2\widehat i + 7\widehat j + 3\widehat k).\,(3\widehat i + 2\widehat j + 5\widehat k)$
$ \Rightarrow (2 \times 3) + (7 \times 2) + (3 \times 5)$ eq. (2)
$ \Rightarrow (\overrightarrow A .\,\overrightarrow B )\, = \,35$
Here, we take one product of the numbers in the same co ordinate and then add them all to obtain $(\overrightarrow A .\,\overrightarrow B )\,$
Also, remember that the dot product of $\widehat i$, $\widehat j$ and $\widehat k$ with itself is 1.
Now,
$|\overrightarrow B |\, = \,\sqrt {{{(\widehat i)}^2}\, + \,{{(\widehat j\,)}^2} + \,{{(\widehat k)}^2}} $
$|\overrightarrow B |\, = \,\sqrt {{{(3)}^2}\, + \,{{(2\,)}^2} + \,{{(5)}^2}} $
$|\overrightarrow B |\, = \,\sqrt {38} $
Now putting the value in eq. (1), we get
\[\Pr o{j_{(\overrightarrow {B)} }}^{(\overrightarrow {A)} } = \,\dfrac{{35}}{{\sqrt {38} }} = \,5.67\]
Note:
Students must have an idea of certain vector properties before attempting this question. The scalar products of two vectors a and b, denoted by \[\overrightarrow a .\,\overrightarrow b \] is defined as \[\overrightarrow a .\,\overrightarrow b = |\,\overrightarrow a |\,|\overrightarrow b |\,\cos \,\theta \] where $\theta $ is the angle between vector and vector b, $0 \leqslant \theta \leqslant \pi $. If either vector (a) equal to zero or vector (b) equal to zero, then $\theta $ is not defined, and in this case, we define \[\overrightarrow a .\,\overrightarrow b = 0\].
The problem has a vector $\overrightarrow A $ projected on vector $\overrightarrow B $. Thus, one vector component of $\overrightarrow A $ is parallel to the vector $\overrightarrow B $. We can easily calculate the projection of $\overrightarrow A $ and $\overrightarrow B $ by using one formula
\[{\text{Pro}}{{\text{j}}_{(\overrightarrow {B)} }}^{(\overrightarrow {A)} } = \,\dfrac{1}{{|\overrightarrow B |\,}}\,(\overrightarrow A \,.\,\overrightarrow B )\,\,or\,\,\dfrac{{(\overrightarrow A \,.\,\overrightarrow B )\,}}{{|\overrightarrow B |\,}}\]
Stepwise solution:
Given:
$\overrightarrow A = 2\widehat i + 7\widehat j + 3\widehat k$
$\overrightarrow B = 3\widehat i + 2\widehat j + 5\widehat k$
If it is given in the question that $\overrightarrow A $ projects on $\overrightarrow B $ , so that the vector component of $\overrightarrow A $ is in the direction of vector component $\overrightarrow B $. The orthogonal projection of A onto a straight line parallel to B, which is defined as \[A = A\widehat B\] where A is scalar, called a scalar projection of A onto B, and B is the unit vector in the direction of B.
Thus, the projection of $\overrightarrow A $ on $\overrightarrow B $ can be written as:
\[\Pr o{j_{(\overrightarrow {B)} }}^{(\overrightarrow {A)} } = \,\dfrac{1}{{|\overrightarrow B |\,}}\,(\overrightarrow A \,.\,\overrightarrow B )\,\] eq. (1)
Where, \[(\overrightarrow A \,.\,\overrightarrow B )\,\]is the dot product of two vectors $\overrightarrow A $and $\overrightarrow B $ and $|\overrightarrow B |$ is the magnitude of vector $\overrightarrow B $.
$\overrightarrow A = 2\widehat i + 7\widehat j + 3\widehat k$ and $\overrightarrow B = 3\widehat i + 2\widehat j + 5\widehat k$
So, dot product of $\overrightarrow A $ and $\overrightarrow B $ gives:
$(\overrightarrow A .\overrightarrow B )\, = \,(2\widehat i + 7\widehat j + 3\widehat k).\,(3\widehat i + 2\widehat j + 5\widehat k)$
$ \Rightarrow (2 \times 3) + (7 \times 2) + (3 \times 5)$ eq. (2)
$ \Rightarrow (\overrightarrow A .\,\overrightarrow B )\, = \,35$
Here, we take one product of the numbers in the same co ordinate and then add them all to obtain $(\overrightarrow A .\,\overrightarrow B )\,$
Also, remember that the dot product of $\widehat i$, $\widehat j$ and $\widehat k$ with itself is 1.
Now,
$|\overrightarrow B |\, = \,\sqrt {{{(\widehat i)}^2}\, + \,{{(\widehat j\,)}^2} + \,{{(\widehat k)}^2}} $
$|\overrightarrow B |\, = \,\sqrt {{{(3)}^2}\, + \,{{(2\,)}^2} + \,{{(5)}^2}} $
$|\overrightarrow B |\, = \,\sqrt {38} $
Now putting the value in eq. (1), we get
\[\Pr o{j_{(\overrightarrow {B)} }}^{(\overrightarrow {A)} } = \,\dfrac{{35}}{{\sqrt {38} }} = \,5.67\]
Note:
Students must have an idea of certain vector properties before attempting this question. The scalar products of two vectors a and b, denoted by \[\overrightarrow a .\,\overrightarrow b \] is defined as \[\overrightarrow a .\,\overrightarrow b = |\,\overrightarrow a |\,|\overrightarrow b |\,\cos \,\theta \] where $\theta $ is the angle between vector and vector b, $0 \leqslant \theta \leqslant \pi $. If either vector (a) equal to zero or vector (b) equal to zero, then $\theta $ is not defined, and in this case, we define \[\overrightarrow a .\,\overrightarrow b = 0\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

