Answer
Verified
389.1k+ views
Hint: In this type of question we have to use the concept of direction ratios. We know that, if O is the origin and P is any point, and a, b, c are the Direction Ratios of OP, then Direction Cosines of OP are given by, \[\pm \dfrac{a}{r},\pm \dfrac{b}{r},\pm \dfrac{c}{r}\] where \[r=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\]. Also if OP = k and l, m, n are the Direction Cosines of OP then we know that, \[{{P}_{x}}=lk,{{P}_{y}}=mk,{{P}_{z}}=nk\].
Complete step by step answer:
Now, we have to find the value of \[{{P}_{x}}+{{P}_{y}}+{{P}_{z}}\] if \[\text{O}=\left( 0,0,0 \right),\text{ OP = 5}\] and the DRS of \[\text{OP}\] is \[\text{1,2,2}\]
As we know that, if a, b, c are direction ratios of OP then Direction Cosines of OP can be given by, \[\pm \dfrac{a}{r},\pm \dfrac{b}{r},\pm \dfrac{c}{r}\] where \[r=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
Here, \[\text{OP = 5}\] and the Direction ratios of OP are \[\text{1,2,2}\], hence the Direction Cosines of OP are \[\pm \dfrac{1}{3},\pm \dfrac{2}{3},\pm \dfrac{2}{3}\] since \[r=\sqrt{{{1}^{2}}+{{2}^{2}}+{{2}^{2}}}=\sqrt{9}=3\].
Now let us take positive signs in the Direction Cosines of OP.
Hence, we get the values, \[\dfrac{1}{3},\dfrac{2}{3},\dfrac{2}{3}\]
\[\Rightarrow l=\dfrac{1}{3},m=\dfrac{2}{3},n=\dfrac{2}{3}\]
Now, as if OP = k and l, m, n are the Direction Cosines of OP then we know that, \[{{P}_{x}}=lk,{{P}_{y}}=mk,{{P}_{z}}=nk\].
Here, OP = 5 and \[l=\dfrac{1}{3},m=\dfrac{2}{3},n=\dfrac{2}{3}\]. Hence, we can calculate, \[{{P}_{x}}\], \[{{P}_{y}}\] and \[{{P}_{z}}\] as follows:
\[\begin{align}
& \Rightarrow {{P}_{x}}=lk=\dfrac{1}{3}\times 5=\dfrac{5}{3} \\
& \Rightarrow {{P}_{y}}=mk=\dfrac{2}{3}\times 5=\dfrac{10}{3} \\
& \Rightarrow {{P}_{z}}=nk=\dfrac{2}{3}\times 5=\dfrac{10}{3} \\
\end{align}\]
Thus we can write our final answer as,
\[\Rightarrow {{P}_{x}}+{{P}_{y}}+{{P}_{z}}=\dfrac{5}{3}+\dfrac{10}{3}+\dfrac{10}{3}=\dfrac{25}{3}\]
So, the correct answer is “Option c”.
Note: In this type of question students have to remember to calculate Direction Cosines from the given Direction Ratios and then have to perform calculation for the coordinates of P. Also students have to take care in the calculation they have to maintain the same sign throughout, signs should not be changed.
Complete step by step answer:
Now, we have to find the value of \[{{P}_{x}}+{{P}_{y}}+{{P}_{z}}\] if \[\text{O}=\left( 0,0,0 \right),\text{ OP = 5}\] and the DRS of \[\text{OP}\] is \[\text{1,2,2}\]
As we know that, if a, b, c are direction ratios of OP then Direction Cosines of OP can be given by, \[\pm \dfrac{a}{r},\pm \dfrac{b}{r},\pm \dfrac{c}{r}\] where \[r=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\].
Here, \[\text{OP = 5}\] and the Direction ratios of OP are \[\text{1,2,2}\], hence the Direction Cosines of OP are \[\pm \dfrac{1}{3},\pm \dfrac{2}{3},\pm \dfrac{2}{3}\] since \[r=\sqrt{{{1}^{2}}+{{2}^{2}}+{{2}^{2}}}=\sqrt{9}=3\].
Now let us take positive signs in the Direction Cosines of OP.
Hence, we get the values, \[\dfrac{1}{3},\dfrac{2}{3},\dfrac{2}{3}\]
\[\Rightarrow l=\dfrac{1}{3},m=\dfrac{2}{3},n=\dfrac{2}{3}\]
Now, as if OP = k and l, m, n are the Direction Cosines of OP then we know that, \[{{P}_{x}}=lk,{{P}_{y}}=mk,{{P}_{z}}=nk\].
Here, OP = 5 and \[l=\dfrac{1}{3},m=\dfrac{2}{3},n=\dfrac{2}{3}\]. Hence, we can calculate, \[{{P}_{x}}\], \[{{P}_{y}}\] and \[{{P}_{z}}\] as follows:
\[\begin{align}
& \Rightarrow {{P}_{x}}=lk=\dfrac{1}{3}\times 5=\dfrac{5}{3} \\
& \Rightarrow {{P}_{y}}=mk=\dfrac{2}{3}\times 5=\dfrac{10}{3} \\
& \Rightarrow {{P}_{z}}=nk=\dfrac{2}{3}\times 5=\dfrac{10}{3} \\
\end{align}\]
Thus we can write our final answer as,
\[\Rightarrow {{P}_{x}}+{{P}_{y}}+{{P}_{z}}=\dfrac{5}{3}+\dfrac{10}{3}+\dfrac{10}{3}=\dfrac{25}{3}\]
So, the correct answer is “Option c”.
Note: In this type of question students have to remember to calculate Direction Cosines from the given Direction Ratios and then have to perform calculation for the coordinates of P. Also students have to take care in the calculation they have to maintain the same sign throughout, signs should not be changed.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths