
If $${}^{n}P_{r}=5040$$ and $${}^{n}C_{r}=210$$, then find n and r.
Answer
584.7k+ views
Hint: In this question it is given that we have to find the value of n and r, where $${}^{n}P_{r}=5040$$ and $${}^{n}C_{r}=210$$. So fo find the solution we need to know that $${}^{n}C_{r}$$ can be written as, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$
And also $${}^{n}P_{r}$$ can be written as $${}^{n}P_{r}=\dfrac{n!}{\left( n-r\right) !}$$.
Where, $$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 3\cdot 2\cdot 1$$
Complete step-by-step solution:
Given that,
$${}^{n}P_{r}=5040$$.............(1)
Now as we know that $${}^{n}P_{r}=\dfrac{n!}{\left( n-r\right) !}$$
So from equation (1), we can write,
$$\dfrac{n!}{\left( n-r\right) !} =5040$$............(2)
Also here it is given,
$${}^{n}C_{r}=210$$
$$\Rightarrow \dfrac{n!}{r!\cdot \left( n-r\right) !} =210$$ [$${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$ ]
$$\Rightarrow \dfrac{1}{r!} \times \dfrac{n!}{\left( n-r\right) !} =210$$
Now putting the value of $$\dfrac{n!}{\left( n-r\right) !}$$ from the equation (2), we can write the above equation as,
$$ \dfrac{1}{r!} \times 5040=210$$
$$\Rightarrow \dfrac{1}{r!} =\dfrac{210}{5040}$$ [dividing both side by 5040]
$$\Rightarrow \dfrac{1}{r!} =\dfrac{1}{24}$$
Now by cross multiplication the above equation can be written as,
$$\Rightarrow r!=24$$
$$\Rightarrow r!=4\times 3\times 2\times 1$$
$$\Rightarrow r!=4!$$
Therefore r=4,
Now by putting the value of r in equation (2) we get,
$$\dfrac{n!}{\left( n-4\right) !} =5040$$
Now since n!=n
$$\Rightarrow \dfrac{n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) \cdot \left( n-4\right) !}{\left( n-4\right) !} =5040$$
$$\Rightarrow n\left( n-1\right) \left( n-2\right) \left( n-3\right) =5040$$...........(3)
Now we are going to factorise 5040 and we have to express it the multiplication of four terms,
$$5040=7\times 6\times 5\times 4\times 3\times 2\times 1$$
$$=7\times 6\times 5\times 4\times 3\times 2$$
$$=7\times \left( 3\times 2\right) \times 5\times 4\times 3\times 2$$
$$=7\times 3\times 2\times 5\times 4\times 3\times 2$$
$$=7\times (2\times 4)\times (5\times 2)\times (3\times 3)$$ [by rearranging]
$$=7\times 8\times 10\times 9$$
$$=10\times 9\times 8\times 7$$
Now putting the factored form of 5040 in the equation (3) we get,
$$n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) =10\times 9\times 8\times 7$$
$$n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) =10\cdot \left( 10-1\right) \cdot \left( 10-2\right) \cdot \left( 10-3\right) $$
Now comparing the both sides of the above equation, we can easily say that the value of n is 10, i.e, n = 10.
Therefore r= 4 and n= 10.
Which is our required solution.
Note: While solving this type of question you need to know that we cannot solve the above equation by conventional method, so that is why we use the comparison method, i.e we have made the same structure on both sides of the equation and after that we can equate the corresponding values.
And also $${}^{n}P_{r}$$ can be written as $${}^{n}P_{r}=\dfrac{n!}{\left( n-r\right) !}$$.
Where, $$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 3\cdot 2\cdot 1$$
Complete step-by-step solution:
Given that,
$${}^{n}P_{r}=5040$$.............(1)
Now as we know that $${}^{n}P_{r}=\dfrac{n!}{\left( n-r\right) !}$$
So from equation (1), we can write,
$$\dfrac{n!}{\left( n-r\right) !} =5040$$............(2)
Also here it is given,
$${}^{n}C_{r}=210$$
$$\Rightarrow \dfrac{n!}{r!\cdot \left( n-r\right) !} =210$$ [$${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$ ]
$$\Rightarrow \dfrac{1}{r!} \times \dfrac{n!}{\left( n-r\right) !} =210$$
Now putting the value of $$\dfrac{n!}{\left( n-r\right) !}$$ from the equation (2), we can write the above equation as,
$$ \dfrac{1}{r!} \times 5040=210$$
$$\Rightarrow \dfrac{1}{r!} =\dfrac{210}{5040}$$ [dividing both side by 5040]
$$\Rightarrow \dfrac{1}{r!} =\dfrac{1}{24}$$
Now by cross multiplication the above equation can be written as,
$$\Rightarrow r!=24$$
$$\Rightarrow r!=4\times 3\times 2\times 1$$
$$\Rightarrow r!=4!$$
Therefore r=4,
Now by putting the value of r in equation (2) we get,
$$\dfrac{n!}{\left( n-4\right) !} =5040$$
Now since n!=n
$$\Rightarrow \dfrac{n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) \cdot \left( n-4\right) !}{\left( n-4\right) !} =5040$$
$$\Rightarrow n\left( n-1\right) \left( n-2\right) \left( n-3\right) =5040$$...........(3)
Now we are going to factorise 5040 and we have to express it the multiplication of four terms,
$$5040=7\times 6\times 5\times 4\times 3\times 2\times 1$$
$$=7\times 6\times 5\times 4\times 3\times 2$$
$$=7\times \left( 3\times 2\right) \times 5\times 4\times 3\times 2$$
$$=7\times 3\times 2\times 5\times 4\times 3\times 2$$
$$=7\times (2\times 4)\times (5\times 2)\times (3\times 3)$$ [by rearranging]
$$=7\times 8\times 10\times 9$$
$$=10\times 9\times 8\times 7$$
Now putting the factored form of 5040 in the equation (3) we get,
$$n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) =10\times 9\times 8\times 7$$
$$n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) =10\cdot \left( 10-1\right) \cdot \left( 10-2\right) \cdot \left( 10-3\right) $$
Now comparing the both sides of the above equation, we can easily say that the value of n is 10, i.e, n = 10.
Therefore r= 4 and n= 10.
Which is our required solution.
Note: While solving this type of question you need to know that we cannot solve the above equation by conventional method, so that is why we use the comparison method, i.e we have made the same structure on both sides of the equation and after that we can equate the corresponding values.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

