
If $${}^{n}P_{r}=5040$$ and $${}^{n}C_{r}=210$$, then find n and r.
Answer
598.2k+ views
Hint: In this question it is given that we have to find the value of n and r, where $${}^{n}P_{r}=5040$$ and $${}^{n}C_{r}=210$$. So fo find the solution we need to know that $${}^{n}C_{r}$$ can be written as, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$
And also $${}^{n}P_{r}$$ can be written as $${}^{n}P_{r}=\dfrac{n!}{\left( n-r\right) !}$$.
Where, $$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 3\cdot 2\cdot 1$$
Complete step-by-step solution:
Given that,
$${}^{n}P_{r}=5040$$.............(1)
Now as we know that $${}^{n}P_{r}=\dfrac{n!}{\left( n-r\right) !}$$
So from equation (1), we can write,
$$\dfrac{n!}{\left( n-r\right) !} =5040$$............(2)
Also here it is given,
$${}^{n}C_{r}=210$$
$$\Rightarrow \dfrac{n!}{r!\cdot \left( n-r\right) !} =210$$ [$${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$ ]
$$\Rightarrow \dfrac{1}{r!} \times \dfrac{n!}{\left( n-r\right) !} =210$$
Now putting the value of $$\dfrac{n!}{\left( n-r\right) !}$$ from the equation (2), we can write the above equation as,
$$ \dfrac{1}{r!} \times 5040=210$$
$$\Rightarrow \dfrac{1}{r!} =\dfrac{210}{5040}$$ [dividing both side by 5040]
$$\Rightarrow \dfrac{1}{r!} =\dfrac{1}{24}$$
Now by cross multiplication the above equation can be written as,
$$\Rightarrow r!=24$$
$$\Rightarrow r!=4\times 3\times 2\times 1$$
$$\Rightarrow r!=4!$$
Therefore r=4,
Now by putting the value of r in equation (2) we get,
$$\dfrac{n!}{\left( n-4\right) !} =5040$$
Now since n!=n
$$\Rightarrow \dfrac{n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) \cdot \left( n-4\right) !}{\left( n-4\right) !} =5040$$
$$\Rightarrow n\left( n-1\right) \left( n-2\right) \left( n-3\right) =5040$$...........(3)
Now we are going to factorise 5040 and we have to express it the multiplication of four terms,
$$5040=7\times 6\times 5\times 4\times 3\times 2\times 1$$
$$=7\times 6\times 5\times 4\times 3\times 2$$
$$=7\times \left( 3\times 2\right) \times 5\times 4\times 3\times 2$$
$$=7\times 3\times 2\times 5\times 4\times 3\times 2$$
$$=7\times (2\times 4)\times (5\times 2)\times (3\times 3)$$ [by rearranging]
$$=7\times 8\times 10\times 9$$
$$=10\times 9\times 8\times 7$$
Now putting the factored form of 5040 in the equation (3) we get,
$$n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) =10\times 9\times 8\times 7$$
$$n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) =10\cdot \left( 10-1\right) \cdot \left( 10-2\right) \cdot \left( 10-3\right) $$
Now comparing the both sides of the above equation, we can easily say that the value of n is 10, i.e, n = 10.
Therefore r= 4 and n= 10.
Which is our required solution.
Note: While solving this type of question you need to know that we cannot solve the above equation by conventional method, so that is why we use the comparison method, i.e we have made the same structure on both sides of the equation and after that we can equate the corresponding values.
And also $${}^{n}P_{r}$$ can be written as $${}^{n}P_{r}=\dfrac{n!}{\left( n-r\right) !}$$.
Where, $$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 3\cdot 2\cdot 1$$
Complete step-by-step solution:
Given that,
$${}^{n}P_{r}=5040$$.............(1)
Now as we know that $${}^{n}P_{r}=\dfrac{n!}{\left( n-r\right) !}$$
So from equation (1), we can write,
$$\dfrac{n!}{\left( n-r\right) !} =5040$$............(2)
Also here it is given,
$${}^{n}C_{r}=210$$
$$\Rightarrow \dfrac{n!}{r!\cdot \left( n-r\right) !} =210$$ [$${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$ ]
$$\Rightarrow \dfrac{1}{r!} \times \dfrac{n!}{\left( n-r\right) !} =210$$
Now putting the value of $$\dfrac{n!}{\left( n-r\right) !}$$ from the equation (2), we can write the above equation as,
$$ \dfrac{1}{r!} \times 5040=210$$
$$\Rightarrow \dfrac{1}{r!} =\dfrac{210}{5040}$$ [dividing both side by 5040]
$$\Rightarrow \dfrac{1}{r!} =\dfrac{1}{24}$$
Now by cross multiplication the above equation can be written as,
$$\Rightarrow r!=24$$
$$\Rightarrow r!=4\times 3\times 2\times 1$$
$$\Rightarrow r!=4!$$
Therefore r=4,
Now by putting the value of r in equation (2) we get,
$$\dfrac{n!}{\left( n-4\right) !} =5040$$
Now since n!=n
$$\Rightarrow \dfrac{n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) \cdot \left( n-4\right) !}{\left( n-4\right) !} =5040$$
$$\Rightarrow n\left( n-1\right) \left( n-2\right) \left( n-3\right) =5040$$...........(3)
Now we are going to factorise 5040 and we have to express it the multiplication of four terms,
$$5040=7\times 6\times 5\times 4\times 3\times 2\times 1$$
$$=7\times 6\times 5\times 4\times 3\times 2$$
$$=7\times \left( 3\times 2\right) \times 5\times 4\times 3\times 2$$
$$=7\times 3\times 2\times 5\times 4\times 3\times 2$$
$$=7\times (2\times 4)\times (5\times 2)\times (3\times 3)$$ [by rearranging]
$$=7\times 8\times 10\times 9$$
$$=10\times 9\times 8\times 7$$
Now putting the factored form of 5040 in the equation (3) we get,
$$n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) =10\times 9\times 8\times 7$$
$$n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdot \left( n-3\right) =10\cdot \left( 10-1\right) \cdot \left( 10-2\right) \cdot \left( 10-3\right) $$
Now comparing the both sides of the above equation, we can easily say that the value of n is 10, i.e, n = 10.
Therefore r= 4 and n= 10.
Which is our required solution.
Note: While solving this type of question you need to know that we cannot solve the above equation by conventional method, so that is why we use the comparison method, i.e we have made the same structure on both sides of the equation and after that we can equate the corresponding values.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

