
If non-zero real numbers b and c are such that \[min{\text{ }}f\left( x \right) > max{\text{ }}g\left( x \right)\], where \[f\left( x \right) = {\text{ }}{x^2} + 2bx + 2{c^2}\] and\[g\left( x \right) = - {x^2} - 2cx + {b^2}\]\[(x \in R)\], then \[\left| {\dfrac{c}{b}} \right|\;\] lies in the interval:
(a) \[\left( {0,\dfrac{1}{2}} \right)\]
(b) \[\left[ {\dfrac{1}{2},\dfrac{1}{{\sqrt 2 }}} \right)\]
(c) \[\left[ {\dfrac{1}{{\sqrt 2 }},\sqrt 2 } \right]\]
(d) \[\left( {\sqrt 2 ,\infty } \right)\]
Answer
510k+ views
Hint: Here first we will find the derivative of f(x) and then find the value of x. Also we will find the double derivative of f(x), if it comes out to be greater than zero then f(x) will have a minimum value at the evaluated value of x. Hence we will find the minimum value of f(x)
Now we will find the derivative of g(x) and then find the value of x. Also we will find the double derivative of g(x), if it comes out to be less than zero then f(x) will have maximum value at the evaluated value of x. Hence we will find the maximum value of g(x) and then finally we will substitute the values in the given expression and find the desired value.
Complete step-by-step answer:
Let us first consider the function f(x):
\[f\left( x \right) = {\text{ }}{x^2} + 2bx + 2{c^2}\]
Differentiating both the sides we get:-
\[\dfrac{d}{{dx}}f\left( x \right) = {\text{ }}\dfrac{d}{{dx}}\left( {{x^2} + 2bx + 2{c^2}} \right)\]
Solving it further we get:-
\[\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {{x^2}} \right) + 2b\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {2{c^2}} \right)\]
Now we know that:-
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Also, the derivative of constant term is zero.
Applying these formulas we get:-
\[f'\left( x \right) = 2x + 2b\]
Now we will put \[f'\left( x \right) = 0\]
Hence we get:-
\[2x + 2b = 0\]
Evaluating the value of x we get:-
\[
2x = - 2b \\
\Rightarrow x = \dfrac{{ - 2b}}{2} \\
\Rightarrow x = - b \\
\]
Now we will again differentiate \[f'\left( x \right)\]to find the double derivative of f(x).
Hence on differentiating we get:-
\[\dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left( {2x + 2b} \right)\]
Solving it further we get:-
\[f''\left( x \right) = 2\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {2b} \right)\]
Now we know that:-
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Also, the derivative of constant term is zero.
Applying these formulas we get:-
\[
f''\left( x \right) = 2 + 0 \\
\Rightarrow f''\left( x \right) = 2 \\
\]
Now since,
\[f''\left( x \right) > 0\]
Hence this implies that minimum value of f(x) exists at \[x = - b\]
Therefore putting \[x = - b\]in f(x) we get:-
\[f\left( { - b} \right) = {\left( { - b} \right)^2} + 2b\left( { - b} \right) + 2{c^2}\]
Solving it further we get:
\[
f\left( { - b} \right) = {b^2} - 2{b^2} + 2{c^2} \\
\Rightarrow f\left( { - b} \right) = - {b^2} + 2{c^2} \\
\]
Hence,
\[\min f\left( x \right) = - {b^2} + 2{c^2}\]………………………………(1)
Now we will consider the function g(x):-
Differentiating both the sides we get:-
\[\dfrac{d}{{dx}}g\left( x \right) = \dfrac{d}{{dx}}\left( { - {x^2} - 2cx + {b^2}} \right)\]
Solving it further we get:-
\[\dfrac{d}{{dx}}g\left( x \right) = - \dfrac{d}{{dx}}\left( {{x^2}} \right) - 2c\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {{b^2}} \right)\]
Now we know that:-
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Also, the derivative of constant term is zero.
Applying these formulas we get:-
\[g'\left( x \right) = - 2x - 2c\]
Now we will put \[g'\left( x \right) = 0\]
Hence we get:-
\[ - 2x - 2c = 0\]
Evaluating the value of x we get:-
\[
- 2x = 2c \\
\Rightarrow x = \dfrac{{2c}}{{ - 2}} \\
\Rightarrow x = - c \\
\]
Now we will again differentiate \[g'\left( x \right)\]to find the double derivative of g(x).
Hence on differentiating we get:-
\[\dfrac{d}{{dx}}g'\left( x \right) = \dfrac{d}{{dx}}\left( { - 2x - 2c} \right)\]
Solving it further we get:-
\[g''\left( x \right) = - 2\dfrac{d}{{dx}}\left( x \right) - \dfrac{d}{{dx}}\left( {2c} \right)\]
Now we know that:-
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Also, the derivative of constant term is zero.
Applying these formulas we get:-
\[
g''\left( x \right) = - 2 + 0 \\
\Rightarrow g''\left( x \right) = - 2 \\
\]
Now since,
\[g''\left( x \right) < 0\]
Hence this implies that maximum value of g(x) exists at \[x = - c\]
Therefore putting \[x = - c\]in g(x) we get:-
\[g\left( { - c} \right) = - {\left( { - c} \right)^2} - 2c\left( { - c} \right) + {b^2}\]
Solving it further we get:
\[
g\left( { - c} \right) = - {c^2} + 2{c^2} + {b^2} \\
\Rightarrow g\left( { - c} \right) = {c^2} + {b^2} \\
\]
Hence,
\[\max g\left( x \right) = {c^2} + {b^2}\]………………………………(2)
Now it is given that:-
\[min{\text{ }}f\left( x \right) > max{\text{ }}g\left( x \right)\]
Hence putting in the values from equation1 and 2 we get:-
\[ - {b^2} + 2{c^2} > {c^2} + {b^2}\]
Solving it further we get:-
\[
2{c^2} - {c^2} > {b^2} + {b^2} \\
\Rightarrow {c^2} > 2{b^2} \\
\]
Simplifying it further we get:-
\[\dfrac{{{c^2}}}{{{b^2}}} > 2\]
Now taking square root of both sides we get:-
\[
\sqrt {\dfrac{{{c^2}}}{{{b^2}}}} > \sqrt 2 \\
\Rightarrow \left| {\dfrac{c}{b}} \right| > \sqrt 2 \\
\]
Hence, \[\left| {\dfrac{c}{b}} \right|\] lies in the interval \[\left( {\sqrt 2 ,\infty } \right)\]
Therefore option D is correct.
Note: Students might make mistakes while observing the values of double derivatives.
They should note that if the double derivative of a function is greater than zero then the minimum value of the function exists at an evaluated value of x.
If the double derivative of a function is less than zero then the maximum value of the function exists at an evaluated value of x.
Also, the modulus value of any quantity is always greater than 0 or positive.
Also,
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Now we will find the derivative of g(x) and then find the value of x. Also we will find the double derivative of g(x), if it comes out to be less than zero then f(x) will have maximum value at the evaluated value of x. Hence we will find the maximum value of g(x) and then finally we will substitute the values in the given expression and find the desired value.
Complete step-by-step answer:
Let us first consider the function f(x):
\[f\left( x \right) = {\text{ }}{x^2} + 2bx + 2{c^2}\]
Differentiating both the sides we get:-
\[\dfrac{d}{{dx}}f\left( x \right) = {\text{ }}\dfrac{d}{{dx}}\left( {{x^2} + 2bx + 2{c^2}} \right)\]
Solving it further we get:-
\[\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {{x^2}} \right) + 2b\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {2{c^2}} \right)\]
Now we know that:-
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Also, the derivative of constant term is zero.
Applying these formulas we get:-
\[f'\left( x \right) = 2x + 2b\]
Now we will put \[f'\left( x \right) = 0\]
Hence we get:-
\[2x + 2b = 0\]
Evaluating the value of x we get:-
\[
2x = - 2b \\
\Rightarrow x = \dfrac{{ - 2b}}{2} \\
\Rightarrow x = - b \\
\]
Now we will again differentiate \[f'\left( x \right)\]to find the double derivative of f(x).
Hence on differentiating we get:-
\[\dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left( {2x + 2b} \right)\]
Solving it further we get:-
\[f''\left( x \right) = 2\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {2b} \right)\]
Now we know that:-
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Also, the derivative of constant term is zero.
Applying these formulas we get:-
\[
f''\left( x \right) = 2 + 0 \\
\Rightarrow f''\left( x \right) = 2 \\
\]
Now since,
\[f''\left( x \right) > 0\]
Hence this implies that minimum value of f(x) exists at \[x = - b\]
Therefore putting \[x = - b\]in f(x) we get:-
\[f\left( { - b} \right) = {\left( { - b} \right)^2} + 2b\left( { - b} \right) + 2{c^2}\]
Solving it further we get:
\[
f\left( { - b} \right) = {b^2} - 2{b^2} + 2{c^2} \\
\Rightarrow f\left( { - b} \right) = - {b^2} + 2{c^2} \\
\]
Hence,
\[\min f\left( x \right) = - {b^2} + 2{c^2}\]………………………………(1)
Now we will consider the function g(x):-
Differentiating both the sides we get:-
\[\dfrac{d}{{dx}}g\left( x \right) = \dfrac{d}{{dx}}\left( { - {x^2} - 2cx + {b^2}} \right)\]
Solving it further we get:-
\[\dfrac{d}{{dx}}g\left( x \right) = - \dfrac{d}{{dx}}\left( {{x^2}} \right) - 2c\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {{b^2}} \right)\]
Now we know that:-
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Also, the derivative of constant term is zero.
Applying these formulas we get:-
\[g'\left( x \right) = - 2x - 2c\]
Now we will put \[g'\left( x \right) = 0\]
Hence we get:-
\[ - 2x - 2c = 0\]
Evaluating the value of x we get:-
\[
- 2x = 2c \\
\Rightarrow x = \dfrac{{2c}}{{ - 2}} \\
\Rightarrow x = - c \\
\]
Now we will again differentiate \[g'\left( x \right)\]to find the double derivative of g(x).
Hence on differentiating we get:-
\[\dfrac{d}{{dx}}g'\left( x \right) = \dfrac{d}{{dx}}\left( { - 2x - 2c} \right)\]
Solving it further we get:-
\[g''\left( x \right) = - 2\dfrac{d}{{dx}}\left( x \right) - \dfrac{d}{{dx}}\left( {2c} \right)\]
Now we know that:-
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Also, the derivative of constant term is zero.
Applying these formulas we get:-
\[
g''\left( x \right) = - 2 + 0 \\
\Rightarrow g''\left( x \right) = - 2 \\
\]
Now since,
\[g''\left( x \right) < 0\]
Hence this implies that maximum value of g(x) exists at \[x = - c\]
Therefore putting \[x = - c\]in g(x) we get:-
\[g\left( { - c} \right) = - {\left( { - c} \right)^2} - 2c\left( { - c} \right) + {b^2}\]
Solving it further we get:
\[
g\left( { - c} \right) = - {c^2} + 2{c^2} + {b^2} \\
\Rightarrow g\left( { - c} \right) = {c^2} + {b^2} \\
\]
Hence,
\[\max g\left( x \right) = {c^2} + {b^2}\]………………………………(2)
Now it is given that:-
\[min{\text{ }}f\left( x \right) > max{\text{ }}g\left( x \right)\]
Hence putting in the values from equation1 and 2 we get:-
\[ - {b^2} + 2{c^2} > {c^2} + {b^2}\]
Solving it further we get:-
\[
2{c^2} - {c^2} > {b^2} + {b^2} \\
\Rightarrow {c^2} > 2{b^2} \\
\]
Simplifying it further we get:-
\[\dfrac{{{c^2}}}{{{b^2}}} > 2\]
Now taking square root of both sides we get:-
\[
\sqrt {\dfrac{{{c^2}}}{{{b^2}}}} > \sqrt 2 \\
\Rightarrow \left| {\dfrac{c}{b}} \right| > \sqrt 2 \\
\]
Hence, \[\left| {\dfrac{c}{b}} \right|\] lies in the interval \[\left( {\sqrt 2 ,\infty } \right)\]
Therefore option D is correct.
Note: Students might make mistakes while observing the values of double derivatives.
They should note that if the double derivative of a function is greater than zero then the minimum value of the function exists at an evaluated value of x.
If the double derivative of a function is less than zero then the maximum value of the function exists at an evaluated value of x.
Also, the modulus value of any quantity is always greater than 0 or positive.
Also,
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
