Answer
Verified
429k+ views
Hint: Factor is the number that divides the given number. Therefore, $ n $ will be the collection of all the possible numbers that divide 72. Find all those numbers. Then equate each number with $ xy $ and find the possible values of $ (x,y) $ such that $ xy = n $
Complete step-by-step answer:
It is given in the question that, $ n $ is a factor of 72.
Thus, possible values of $ n $ can be written as
$ \Rightarrow n = \{ 1,2,3,4,6,8,9,12,18,24,36,72\} $
Now, it is also given that
$ xy = n $
We need to find the ordered pairs $ (x,y) $ such that their product is equal to $ n $ . For that, we will consider one value of $ n $ and find the possible values of $ (x,y) $ such that $ xy = n $ .
Then we will take another value of $ n $ and find the possible values of $ (x,y) $ such that $ xy = n $ .
We will keep doing this until we exhaust all the values of $ n $ .
For $ n = 1 $
$ (x,y) = \{ (1,1)\} $
For $ n = 2 $
$ (x,y) = \{ (1,2),(2,1)\} $
For $ n = 3 $
$ (x,y) = \{ (1,3),(3,1)\} $
For $ n = 4 $
$ (x,y) = \{ (1,4),(4,1),(2,2)\} $
For $ n = 6 $
$ (x,y) = \{ (1,6),(6,1),(2,3),(3,2)\} $
For $ n = 8 $
$ (x,y) = \{ (1,8),(8,1),(2,4),(4,2)\} $
For $ n = 9 $
$ (x,y) = \{ (1,9),(9,1),(3,3)\} $
For $ n = 12 $
$ (x,y) = \{ (1,12),(12,1),(3,4),(4,3),(2,6),(6,2)\} $
For $ n = 18 $
$ (x,y) = \{ (1,18),(18,1),(2,9),(3,6),(9,2),(6,3)\} $
For $ n = 24 $
$ (x,y) = \{ (1,24),(24,1),(2,12),(12,2),(3,8),(8,3),(4,6),(6,4)\} $
For $ n = 36 $
$ (x,y) = \{ (1,36),(36,1),(2,18),(18,2),(3,12),(12,3),(4,9),(9,4),(6,6)\} $
For $ n = 72 $
$ (x,y) = \{ (1,72),(72,1),(2,36),(36,2),(3,24),(24,3),(4,18),(18,4),(6,12),(12,6),(8,9),(9,8)\} $
Now, when we calculate all the possible values of $ (x,y) $ , we get
$ \Rightarrow $ The number of ordered pairs $ (x,y) = 60 $
Therefore, from the above explanation, the correct answer is, option (C) 60
So, the correct answer is “Option C”.
Note: This question gets very lengthy. In such cases you need to be careful to not make any calculation mistakes or to skip any number. We can reduce the solution by writing the ordered pairs in one single order and then multiplying it by 2. You just need to be careful to exclude the ordered pairs of the form $ (a,a) $ while multiplying by 2 as they will not have two different ordered pairs.
Complete step-by-step answer:
It is given in the question that, $ n $ is a factor of 72.
Thus, possible values of $ n $ can be written as
$ \Rightarrow n = \{ 1,2,3,4,6,8,9,12,18,24,36,72\} $
Now, it is also given that
$ xy = n $
We need to find the ordered pairs $ (x,y) $ such that their product is equal to $ n $ . For that, we will consider one value of $ n $ and find the possible values of $ (x,y) $ such that $ xy = n $ .
Then we will take another value of $ n $ and find the possible values of $ (x,y) $ such that $ xy = n $ .
We will keep doing this until we exhaust all the values of $ n $ .
For $ n = 1 $
$ (x,y) = \{ (1,1)\} $
For $ n = 2 $
$ (x,y) = \{ (1,2),(2,1)\} $
For $ n = 3 $
$ (x,y) = \{ (1,3),(3,1)\} $
For $ n = 4 $
$ (x,y) = \{ (1,4),(4,1),(2,2)\} $
For $ n = 6 $
$ (x,y) = \{ (1,6),(6,1),(2,3),(3,2)\} $
For $ n = 8 $
$ (x,y) = \{ (1,8),(8,1),(2,4),(4,2)\} $
For $ n = 9 $
$ (x,y) = \{ (1,9),(9,1),(3,3)\} $
For $ n = 12 $
$ (x,y) = \{ (1,12),(12,1),(3,4),(4,3),(2,6),(6,2)\} $
For $ n = 18 $
$ (x,y) = \{ (1,18),(18,1),(2,9),(3,6),(9,2),(6,3)\} $
For $ n = 24 $
$ (x,y) = \{ (1,24),(24,1),(2,12),(12,2),(3,8),(8,3),(4,6),(6,4)\} $
For $ n = 36 $
$ (x,y) = \{ (1,36),(36,1),(2,18),(18,2),(3,12),(12,3),(4,9),(9,4),(6,6)\} $
For $ n = 72 $
$ (x,y) = \{ (1,72),(72,1),(2,36),(36,2),(3,24),(24,3),(4,18),(18,4),(6,12),(12,6),(8,9),(9,8)\} $
Now, when we calculate all the possible values of $ (x,y) $ , we get
$ \Rightarrow $ The number of ordered pairs $ (x,y) = 60 $
Therefore, from the above explanation, the correct answer is, option (C) 60
So, the correct answer is “Option C”.
Note: This question gets very lengthy. In such cases you need to be careful to not make any calculation mistakes or to skip any number. We can reduce the solution by writing the ordered pairs in one single order and then multiplying it by 2. You just need to be careful to exclude the ordered pairs of the form $ (a,a) $ while multiplying by 2 as they will not have two different ordered pairs.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell